石墨氮化碳
介孔材料
光催化
材料科学
化学工程
氮化碳
降级(电信)
化学
污染物
环境化学
催化作用
有机化学
计算机科学
工程类
电信
作者
Maliheh Razavi-Esfali,Tahereh Mahvelati-Shamsabadi,Hossein Fattahimoghaddam,Byeong–Kyu Lee
标识
DOI:10.1016/j.cej.2021.129503
摘要
Abstract Constructing high-performance visible-light responsive photocatalyst to remediate organic pollutants from wastewater is of great challenge in recent years. In this study, by using SiO2 clusters as a template, mesoporous graphitic carbon nitride nano-clusters (NC MCN) were fabricated as a high-activity photocatalyst. The confined growth of carbon nitride in the presence of SiO2 clusters introduced extra structural defects to the carbon nitride framework including nitrogen vacancies and cyano groups, which was confirmed by employing different characterization analyses. These structural defects created midgap states below the conduction band, which improved light-harvesting efficiency and suppressed electron-hole recombination. Thus, NC MCN showed high photocatalytic activity toward degradation of both tetracycline and rhodamine B under visible light irradiation. Complete degradation of 15 mL solution of 15 ppm tetracycline was achieved in 30 min compared to the bulk catalyst (taking more than 3 h). Furthermore, NC MCN demonstrated high stability after reusing for 8 consecutive photodegradation cycles. The total organic carbon concentration at different reaction time showed a rising and falling trend, which illustrate photodegradation process, i.e. adsorption, photodegradation, and mineralization. By liquid chromatography-mass spectroscopy analysis, the produced intermediates during the tetracycline degradation were proposed, which showed the formation of smaller molecules in just 15 min. The toxicity of the intermediates was analyzed using quantitative structure–activity relationship estimation and the outcomes exhibited that the toxicity of the solution reduced as the reaction time increased. This comprehensive study from photodegradation process to mineralization of TC demonstrated NC MCN as a promising photocatalyst for sustainable treatment of wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI