SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry

自编码 软传感器 过程(计算) 计算机科学 数据挖掘 钥匙(锁) 人工智能 均方误差 人工神经网络 模式识别(心理学) 数学 统计 计算机安全 操作系统
作者
Shiwei Gao,Sulong Qiu,Zhongyu Ma,Ran Tian,Yanxing Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 601-610 被引量:24
标识
DOI:10.1109/jsen.2021.3128562
摘要

Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助max采纳,获得10
1秒前
wawaaaah发布了新的文献求助10
1秒前
柯代真完成签到,获得积分10
1秒前
是小王ya完成签到,获得积分10
1秒前
科研通AI2S应助直率笑翠采纳,获得10
2秒前
华仔应助大漠孤烟采纳,获得10
2秒前
2秒前
文献哈巴狗完成签到,获得积分10
2秒前
2秒前
2秒前
昌昌昌发布了新的文献求助10
3秒前
3秒前
司空剑封发布了新的文献求助10
4秒前
wallacetan完成签到,获得积分10
4秒前
susu307完成签到,获得积分10
4秒前
5秒前
随机子应助妍妍研研采纳,获得10
5秒前
vision0000发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
小巧的语儿完成签到,获得积分10
6秒前
6秒前
ding应助归海神刀采纳,获得10
7秒前
wawaaaah完成签到,获得积分10
7秒前
waddles发布了新的文献求助20
7秒前
7秒前
柯代真发布了新的文献求助10
8秒前
封苏阳完成签到,获得积分10
9秒前
脑洞疼应助Crazy_Runner采纳,获得10
9秒前
9秒前
36456657应助taozi采纳,获得10
10秒前
充电宝应助眼睛大傲旋采纳,获得10
10秒前
10秒前
大尾巴发布了新的文献求助10
11秒前
冷艳薯片完成签到,获得积分10
11秒前
susu307发布了新的文献求助10
12秒前
12秒前
权寻梅完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167994
求助须知:如何正确求助?哪些是违规求助? 2819430
关于积分的说明 7926432
捐赠科研通 2479299
什么是DOI,文献DOI怎么找? 1320689
科研通“疑难数据库(出版商)”最低求助积分说明 632891
版权声明 602443