亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry

软传感器 过程(计算) 计算机科学 操作系统
作者
Shiwei Gao,Sulong Qiu,Zhongyu Ma,Ran Tian,Yanxing Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (1): 601-610 被引量:26
标识
DOI:10.1109/jsen.2021.3128562
摘要

Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的遥完成签到,获得积分10
5秒前
7秒前
ZQ完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
15秒前
tong完成签到 ,获得积分10
16秒前
善学以致用应助bzmuzxy采纳,获得10
22秒前
27秒前
黄晓旭完成签到,获得积分10
28秒前
Duan完成签到 ,获得积分10
29秒前
29秒前
32秒前
niuniu顺利毕业完成签到 ,获得积分10
33秒前
33秒前
Mandy发布了新的文献求助10
35秒前
bzmuzxy发布了新的文献求助10
36秒前
41秒前
48秒前
香蕉觅云应助Mandy采纳,获得10
53秒前
1分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
1分钟前
1分钟前
Mandy完成签到,获得积分20
1分钟前
小马甲应助cccccccc采纳,获得20
1分钟前
赘婿应助小美采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
wqw发布了新的文献求助10
1分钟前
你学习了吗我学不了一点完成签到 ,获得积分10
1分钟前
小美发布了新的文献求助10
1分钟前
1分钟前
柒年啵啵完成签到 ,获得积分10
1分钟前
cccccccc发布了新的文献求助20
1分钟前
小美完成签到,获得积分10
1分钟前
hkxfg发布了新的文献求助10
1分钟前
2213sss完成签到,获得积分10
1分钟前
hkxfg完成签到,获得积分10
1分钟前
Lucas应助wqw采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188