SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry

软传感器 过程(计算) 计算机科学 操作系统
作者
Shiwei Gao,Sulong Qiu,Zhongyu Ma,Ran Tian,Yanxing Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 601-610 被引量:26
标识
DOI:10.1109/jsen.2021.3128562
摘要

Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WTaMi完成签到 ,获得积分10
刚刚
zoe发布了新的文献求助10
刚刚
Owen应助无奈的酒窝采纳,获得10
1秒前
2秒前
4秒前
4秒前
4秒前
科研通AI5应助wangyanwxy采纳,获得10
5秒前
36456657应助豆dou采纳,获得10
5秒前
6秒前
6秒前
7秒前
buno应助jy采纳,获得10
8秒前
paparazzi221发布了新的文献求助10
9秒前
田生完成签到,获得积分10
9秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
9秒前
9秒前
爆米花应助towerman采纳,获得10
10秒前
羊笨笨完成签到 ,获得积分10
10秒前
11秒前
光亮芷天完成签到,获得积分10
11秒前
11秒前
12秒前
粗犷的问夏完成签到,获得积分10
13秒前
知行合一完成签到 ,获得积分10
14秒前
14秒前
15秒前
李爱国应助晨曦采纳,获得10
16秒前
0128lun发布了新的文献求助10
16秒前
phd发布了新的文献求助10
17秒前
君无名完成签到 ,获得积分10
17秒前
经年发布了新的文献求助10
17秒前
QXR完成签到,获得积分10
18秒前
豆dou完成签到,获得积分10
18秒前
Dddd发布了新的文献求助10
18秒前
HCl完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808