机制(生物学)
计算机科学
推论
机器翻译
人工智能
自然(考古学)
翻译(生物学)
电力
电力系统
功率(物理)
自然语言处理
化学
物理
历史
基因
信使核糖核酸
考古
量子力学
生物化学
作者
Junxing Wu,Shuo Tang,Chizhi Huang,Dongdong Zhang,Yingnan Zhao
出处
期刊:Communications in computer and information science
日期:2021-01-01
卷期号:: 618-627
被引量:1
标识
DOI:10.1007/978-3-030-78615-1_54
摘要
The attention mechanism is first employed in natural language processing areas, such as machine translation, natural language generation, and natural language inference. Combining with deep learning framework, it promotes performances of applications in electric power systems recently. In this article, we first discuss the attention mechanism's principle and its applications in various fields; secondly, we analyze and compare multiple applications and performances in power systems. Finally, it proposes the further development of the attention mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI