Artificial Intelligence in Magnetic Resonance Imaging–based Prostate Cancer Diagnosis: Where Do We Stand in 2021?

医学 前列腺癌 前列腺切除术 前列腺活检 前列腺 磁共振成像 活检 放射科 金标准(测试) 人工智能 医学物理学 癌症 计算机科学 内科学
作者
Rodrigo Suarez-Ibarrola,August Sigle,Martin Eklund,Daniel Eberli,Arkadiusz Miernik,Matthias Benndorf,Fabian Bamberg,Christian Gratzke
出处
期刊:European urology focus [Elsevier]
卷期号:8 (2): 409-417 被引量:34
标识
DOI:10.1016/j.euf.2021.03.020
摘要

Men suspected of harboring prostate cancer (PCa) increasingly undergo multiparametric magnetic resonance imaging (mpMRI) and mpMRI-guided biopsy. The potential of mpMRI coupled to artificial intelligence (AI) methods to detect and classify PCa before decision-making requires investigation.To review the literature for studies addressing the diagnostic performance of combined mpMRI and AI approaches to detect and classify PCa, and to provide selection criteria for relevant articles having clinical significance.We performed a nonsystematic search of the English language literature using the PubMed-MEDLINE database up to October 30, 2020. We included all original studies addressing the diagnostic accuracy of mpMRI and AI to detect and classify PCa with histopathological analysis as a reference standard.Eleven studies assessed AI and mpMRI approaches for PCa detection and classification based on a ground truth that referred to the entire prostate either with radical prostatectomy specimens (RPS) or relocalization of positive systematic and/or targeted biopsy. Seven studies retrospectively annotated cancerous lesions onto mpMRI identified in whole-mount sections from RPS, three studies used a backward projection of histological prostate biopsy information, and one study used a combined cohort of both approaches. All studies cross-validated their data sets; only four used a test set and one a multisite validation scheme. Performance metrics for lesion detection ranged from 87.9% to 92% at a threshold specificity of 50%. The lesion classification accuracy of the algorithms was comparable to that of the Prostate Imaging-Reporting and Data System.For an algorithm to be implemented into radiological workflows and to be clinically applicable, it must be trained with a ground truth labeling that reflects histopathological information for the entire prostate and it must be externally validated. Lesion detection and classification performance metrics are promising but require prospective implementation and external validation for clinical significance.We reviewed the literature for studies on prostate cancer detection and classification using magnetic resonance imaging (MRI) and artificial intelligence algorithms. The main application is in supporting radiologists in interpreting MRI scans and improving the diagnostic performance, so that fewer unnecessary biopsies are carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Sun采纳,获得10
刚刚
乐乐应助dengcl-jack采纳,获得10
刚刚
大个应助nemo711采纳,获得10
刚刚
乐乐应助嘻嘻嘻嗨学习采纳,获得10
1秒前
xishanmeng发布了新的文献求助10
1秒前
DH完成签到 ,获得积分10
1秒前
景自端发布了新的文献求助10
1秒前
早岁发布了新的文献求助10
1秒前
留下就好完成签到 ,获得积分10
1秒前
2秒前
脑洞疼应助科研顺利采纳,获得10
2秒前
我是老大应助yuuu采纳,获得10
3秒前
3秒前
万幸鹿发布了新的文献求助10
3秒前
云瑾应助仵一采纳,获得10
3秒前
3秒前
3秒前
hanleiharry1发布了新的文献求助10
3秒前
留胡子的寄文完成签到,获得积分10
4秒前
4秒前
打打应助六味地黄丸采纳,获得10
6秒前
6秒前
大模型应助踏实的含芙采纳,获得10
6秒前
Phosphene应助上古采纳,获得10
7秒前
KE完成签到,获得积分10
9秒前
包容的澜发布了新的文献求助20
9秒前
Becky完成签到,获得积分10
9秒前
繁荣的秋发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
武鑫跃完成签到 ,获得积分10
11秒前
JamesPei应助帆帆帆采纳,获得10
11秒前
123456787899发布了新的文献求助10
11秒前
高艳慧完成签到 ,获得积分10
11秒前
13秒前
13秒前
科学家发布了新的文献求助10
13秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685