亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches

归一化差异植被指数 回归分析 植被(病理学) 增强植被指数 线性回归 遥感 环境科学 数学 基本事实 回归 统计 叶面积指数 植被指数 计算机科学 地理 农学 机器学习 病理 生物 医学
作者
Md. Monirul Islam,Shusuke Matsushita,Ryozo Noguchi,Tofael Ahamed
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:22: 100494-100494 被引量:25
标识
DOI:10.1016/j.rsase.2021.100494
摘要

This research aims to develop rice yield prediction models using satellite remote sensing-based vegetation indices at the optimum harvesting time before flash flooding. Five relevant vegetation indices, the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), rice growth vegetation index (RGVI), moisture stress index (MSI), and leaf area index (LAI), were used to develop several empirical yield prediction models for rice production. For this research, Sentinel-2 images with 10 m spatial resolution was used for the haor area of Bangladesh. To calibrate and validate the remote sensing images at such large spatial and temporal scales, ground reference data of the vegetation indices were used. The generated models were validated using both parametric (simple and multiple) and nonparametric (artificial neural network, ANN) regression analyses. The crop yield models that were developed using regression analyses showed very significant agreement with the ground reference yield information. The best estimated performances for the RGVI (R2 = 0.44), NDVI (R2=0.63), NDVI (R2 = 0.55), and NDVI (R2 = 0.67) in the simple regression analyses were observed for 2017, 2018, and 2019 and the average of seasons from 2017 to 2019. On the other hand, the composite NDVI-RGVI (R2 = 0.65), NDVI-NDWI (R2 = 0.56), and NDVI-MSI (R2 = 0.69) indices were the best-performing vegetation indices for developing boro rice yield prediction models using multiple regression. Nevertheless, in the ANN-based machine-learning results, NDVI exhibited higher accuracy for the average boro rice season (2017–2019) by using a simple regression approach (R2 = 0.84) and multiple regression analysis (R2 = 0.91) of the average NDVI-MSI composite index. Validation between the actual and predicted yields showed that more than 70% of the study area can be accurately predicted using vegetation indices with ground reference mean yield data. Moreover, in 2018, the predicted yields by using simple and multiple linear regression were 4.25 and 4.23 MT/ha, respectively. The developed models are applicable 118–132 days after planting (DAT) in any similar environment for agricultural practices. Therefore, the yield prediction models of boro rice at the maturity stage can be useful for farm risk management, insurance premium determinations, and relevant stakeholder decision-making to mitigate the effects of extreme flash flood events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助牧沛凝采纳,获得10
5秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
25秒前
29秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
科目三应助忧心的迎天采纳,获得10
38秒前
酷炫灵安完成签到,获得积分10
39秒前
耳机单蹦完成签到,获得积分10
58秒前
奋斗的小笼包完成签到 ,获得积分10
1分钟前
慕青应助Bin_Liu采纳,获得10
1分钟前
小石榴爸爸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
舒适的石头完成签到,获得积分10
2分钟前
zl13332完成签到 ,获得积分10
2分钟前
姆姆没买完成签到 ,获得积分0
2分钟前
牧沛凝发布了新的文献求助10
2分钟前
刘倩完成签到 ,获得积分10
2分钟前
向前发布了新的文献求助10
2分钟前
2分钟前
xin完成签到,获得积分10
2分钟前
绿鬼蓝完成签到 ,获得积分10
2分钟前
wbs13521发布了新的文献求助10
2分钟前
2分钟前
852应助牧沛凝采纳,获得10
2分钟前
wbs13521完成签到,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634616
求助须知:如何正确求助?哪些是违规求助? 4731648
关于积分的说明 14988748
捐赠科研通 4792317
什么是DOI,文献DOI怎么找? 2559479
邀请新用户注册赠送积分活动 1519764
关于科研通互助平台的介绍 1479903