已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches

归一化差异植被指数 回归分析 植被(病理学) 增强植被指数 线性回归 遥感 环境科学 数学 基本事实 回归 统计 叶面积指数 植被指数 计算机科学 地理 农学 机器学习 病理 生物 医学
作者
Md. Monirul Islam,Shusuke Matsushita,Ryozo Noguchi,Tofael Ahamed
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:22: 100494-100494 被引量:25
标识
DOI:10.1016/j.rsase.2021.100494
摘要

This research aims to develop rice yield prediction models using satellite remote sensing-based vegetation indices at the optimum harvesting time before flash flooding. Five relevant vegetation indices, the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), rice growth vegetation index (RGVI), moisture stress index (MSI), and leaf area index (LAI), were used to develop several empirical yield prediction models for rice production. For this research, Sentinel-2 images with 10 m spatial resolution was used for the haor area of Bangladesh. To calibrate and validate the remote sensing images at such large spatial and temporal scales, ground reference data of the vegetation indices were used. The generated models were validated using both parametric (simple and multiple) and nonparametric (artificial neural network, ANN) regression analyses. The crop yield models that were developed using regression analyses showed very significant agreement with the ground reference yield information. The best estimated performances for the RGVI (R2 = 0.44), NDVI (R2=0.63), NDVI (R2 = 0.55), and NDVI (R2 = 0.67) in the simple regression analyses were observed for 2017, 2018, and 2019 and the average of seasons from 2017 to 2019. On the other hand, the composite NDVI-RGVI (R2 = 0.65), NDVI-NDWI (R2 = 0.56), and NDVI-MSI (R2 = 0.69) indices were the best-performing vegetation indices for developing boro rice yield prediction models using multiple regression. Nevertheless, in the ANN-based machine-learning results, NDVI exhibited higher accuracy for the average boro rice season (2017–2019) by using a simple regression approach (R2 = 0.84) and multiple regression analysis (R2 = 0.91) of the average NDVI-MSI composite index. Validation between the actual and predicted yields showed that more than 70% of the study area can be accurately predicted using vegetation indices with ground reference mean yield data. Moreover, in 2018, the predicted yields by using simple and multiple linear regression were 4.25 and 4.23 MT/ha, respectively. The developed models are applicable 118–132 days after planting (DAT) in any similar environment for agricultural practices. Therefore, the yield prediction models of boro rice at the maturity stage can be useful for farm risk management, insurance premium determinations, and relevant stakeholder decision-making to mitigate the effects of extreme flash flood events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助dllneu采纳,获得10
1秒前
WillGUO发布了新的文献求助10
1秒前
czb完成签到 ,获得积分10
3秒前
慕青应助凌七采纳,获得10
11秒前
无花果应助yuko采纳,获得10
13秒前
Yu发布了新的文献求助10
14秒前
23秒前
凌七发布了新的文献求助10
26秒前
ET完成签到,获得积分10
26秒前
哈哈完成签到 ,获得积分10
26秒前
希望天下0贩的0应助lan采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
文明8完成签到,获得积分10
29秒前
小蘑菇应助木可采纳,获得10
31秒前
英姑应助啦某某采纳,获得10
32秒前
WillGUO发布了新的文献求助10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
34秒前
ke完成签到,获得积分10
34秒前
淳于绮兰发布了新的文献求助10
34秒前
热情的寄瑶完成签到 ,获得积分10
35秒前
pterionGao完成签到 ,获得积分10
36秒前
芯之痕发布了新的文献求助10
37秒前
852应助可爱的小桃采纳,获得30
37秒前
38秒前
38秒前
伯爵完成签到 ,获得积分10
38秒前
木可完成签到,获得积分20
40秒前
娇娇完成签到 ,获得积分10
43秒前
lan发布了新的文献求助10
43秒前
pupu完成签到 ,获得积分10
43秒前
44秒前
44秒前
啦某某发布了新的文献求助10
47秒前
53秒前
yangjoy发布了新的文献求助10
54秒前
WKJ完成签到,获得积分10
54秒前
55秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204422
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595