Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches

归一化差异植被指数 回归分析 植被(病理学) 增强植被指数 线性回归 遥感 环境科学 数学 基本事实 回归 统计 叶面积指数 植被指数 计算机科学 地理 农学 机器学习 医学 病理 生物
作者
Md. Monirul Islam,Shusuke Matsushita,Ryozo Noguchi,Tofael Ahamed
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:22: 100494-100494 被引量:25
标识
DOI:10.1016/j.rsase.2021.100494
摘要

This research aims to develop rice yield prediction models using satellite remote sensing-based vegetation indices at the optimum harvesting time before flash flooding. Five relevant vegetation indices, the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), rice growth vegetation index (RGVI), moisture stress index (MSI), and leaf area index (LAI), were used to develop several empirical yield prediction models for rice production. For this research, Sentinel-2 images with 10 m spatial resolution was used for the haor area of Bangladesh. To calibrate and validate the remote sensing images at such large spatial and temporal scales, ground reference data of the vegetation indices were used. The generated models were validated using both parametric (simple and multiple) and nonparametric (artificial neural network, ANN) regression analyses. The crop yield models that were developed using regression analyses showed very significant agreement with the ground reference yield information. The best estimated performances for the RGVI (R2 = 0.44), NDVI (R2=0.63), NDVI (R2 = 0.55), and NDVI (R2 = 0.67) in the simple regression analyses were observed for 2017, 2018, and 2019 and the average of seasons from 2017 to 2019. On the other hand, the composite NDVI-RGVI (R2 = 0.65), NDVI-NDWI (R2 = 0.56), and NDVI-MSI (R2 = 0.69) indices were the best-performing vegetation indices for developing boro rice yield prediction models using multiple regression. Nevertheless, in the ANN-based machine-learning results, NDVI exhibited higher accuracy for the average boro rice season (2017–2019) by using a simple regression approach (R2 = 0.84) and multiple regression analysis (R2 = 0.91) of the average NDVI-MSI composite index. Validation between the actual and predicted yields showed that more than 70% of the study area can be accurately predicted using vegetation indices with ground reference mean yield data. Moreover, in 2018, the predicted yields by using simple and multiple linear regression were 4.25 and 4.23 MT/ha, respectively. The developed models are applicable 118–132 days after planting (DAT) in any similar environment for agricultural practices. Therefore, the yield prediction models of boro rice at the maturity stage can be useful for farm risk management, insurance premium determinations, and relevant stakeholder decision-making to mitigate the effects of extreme flash flood events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的酸奶完成签到,获得积分10
1秒前
我是老大应助玉桂兔采纳,获得10
2秒前
Lucas应助犹豫勇采纳,获得30
4秒前
有风的地方完成签到 ,获得积分10
4秒前
banban完成签到,获得积分10
5秒前
本是个江湖散人完成签到,获得积分10
5秒前
爆米花应助清浅采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
无花果应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
快乐应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
arrow完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
sqrt138应助科研通管家采纳,获得20
7秒前
wanci应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
子暮完成签到,获得积分10
7秒前
8秒前
10秒前
爱喝佳得乐完成签到,获得积分10
10秒前
李爱国应助wisteety采纳,获得10
11秒前
yrd完成签到,获得积分10
12秒前
走啊发布了新的文献求助10
13秒前
玉桂兔完成签到,获得积分10
14秒前
lll发布了新的文献求助10
15秒前
111发布了新的文献求助10
16秒前
从容的玉米完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助清风采纳,获得10
18秒前
18秒前
19秒前
温衡的言希完成签到,获得积分10
20秒前
共享精神应助am采纳,获得10
20秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187