Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches

归一化差异植被指数 回归分析 植被(病理学) 增强植被指数 线性回归 遥感 环境科学 数学 基本事实 回归 统计 叶面积指数 植被指数 计算机科学 地理 农学 机器学习 病理 生物 医学
作者
Md. Monirul Islam,Shusuke Matsushita,Ryozo Noguchi,Tofael Ahamed
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:22: 100494-100494 被引量:25
标识
DOI:10.1016/j.rsase.2021.100494
摘要

This research aims to develop rice yield prediction models using satellite remote sensing-based vegetation indices at the optimum harvesting time before flash flooding. Five relevant vegetation indices, the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), rice growth vegetation index (RGVI), moisture stress index (MSI), and leaf area index (LAI), were used to develop several empirical yield prediction models for rice production. For this research, Sentinel-2 images with 10 m spatial resolution was used for the haor area of Bangladesh. To calibrate and validate the remote sensing images at such large spatial and temporal scales, ground reference data of the vegetation indices were used. The generated models were validated using both parametric (simple and multiple) and nonparametric (artificial neural network, ANN) regression analyses. The crop yield models that were developed using regression analyses showed very significant agreement with the ground reference yield information. The best estimated performances for the RGVI (R2 = 0.44), NDVI (R2=0.63), NDVI (R2 = 0.55), and NDVI (R2 = 0.67) in the simple regression analyses were observed for 2017, 2018, and 2019 and the average of seasons from 2017 to 2019. On the other hand, the composite NDVI-RGVI (R2 = 0.65), NDVI-NDWI (R2 = 0.56), and NDVI-MSI (R2 = 0.69) indices were the best-performing vegetation indices for developing boro rice yield prediction models using multiple regression. Nevertheless, in the ANN-based machine-learning results, NDVI exhibited higher accuracy for the average boro rice season (2017–2019) by using a simple regression approach (R2 = 0.84) and multiple regression analysis (R2 = 0.91) of the average NDVI-MSI composite index. Validation between the actual and predicted yields showed that more than 70% of the study area can be accurately predicted using vegetation indices with ground reference mean yield data. Moreover, in 2018, the predicted yields by using simple and multiple linear regression were 4.25 and 4.23 MT/ha, respectively. The developed models are applicable 118–132 days after planting (DAT) in any similar environment for agricultural practices. Therefore, the yield prediction models of boro rice at the maturity stage can be useful for farm risk management, insurance premium determinations, and relevant stakeholder decision-making to mitigate the effects of extreme flash flood events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的汉堡完成签到,获得积分10
1秒前
wxs完成签到,获得积分10
2秒前
浮华乱世完成签到 ,获得积分10
3秒前
但大图完成签到 ,获得积分0
4秒前
dujinjun完成签到,获得积分10
7秒前
lysixsixsix完成签到,获得积分10
10秒前
渴望者完成签到,获得积分10
11秒前
大橙子发布了新的文献求助10
11秒前
ZQ完成签到,获得积分10
18秒前
小包子完成签到,获得积分10
19秒前
liyan完成签到 ,获得积分10
20秒前
21秒前
嗯啊完成签到,获得积分10
23秒前
酷波er应助immm采纳,获得10
24秒前
优雅含莲完成签到 ,获得积分10
24秒前
呜啦啦完成签到,获得积分10
25秒前
25秒前
lulu8809完成签到,获得积分10
28秒前
28秒前
二十五完成签到,获得积分10
29秒前
romeo完成签到,获得积分10
30秒前
kaka完成签到 ,获得积分10
30秒前
Akim应助xialuoke采纳,获得10
30秒前
昏睡的蟠桃应助guoxingliu采纳,获得200
31秒前
慕容松完成签到,获得积分10
32秒前
romeo发布了新的文献求助10
32秒前
ss_hHe完成签到,获得积分10
33秒前
33秒前
34秒前
zjcomposite完成签到,获得积分10
34秒前
nn发布了新的文献求助10
34秒前
css完成签到,获得积分10
34秒前
大橙子发布了新的文献求助10
35秒前
1111完成签到,获得积分10
35秒前
敏er好学完成签到,获得积分10
36秒前
细腻的谷秋完成签到 ,获得积分10
36秒前
独特的易形完成签到,获得积分10
37秒前
yangyangyang完成签到,获得积分0
40秒前
yirenli完成签到,获得积分10
41秒前
叶子完成签到 ,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022