已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of structural response using convolutional neural network: application to the Suramadu bridge

均方误差 平均绝对百分比误差 卷积神经网络 桥(图论) 计算机科学 结构健康监测 人工神经网络 人工智能 数据挖掘 机器学习 模式识别(心理学) 工程类 统计 数学 结构工程 医学 内科学
作者
Arya Pamuncak,Mohammad Reza Salami,Augusta Adha,Bambang Budiono,Irwanda Laory
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:38 (10): 4047-4065 被引量:8
标识
DOI:10.1108/ec-12-2020-0695
摘要

Purpose Structural health monitoring (SHM) has gained significant attention due to its capability in providing support for efficient and optimal bridge maintenance activities. However, despite the promising potential, the effectiveness of SHM system might be hindered by unprecedented factors that impact the continuity of data collection. This research presents a framework utilising convolutional neural network (CNN) for estimating structural response using environmental variations. Design/methodology/approach The CNN framework is validated using monitoring data from the Suramadu bridge monitoring system. Pre-processing is performed to transform the data into data frames, each containing a sequence of data. The data frames are divided into training, validation and testing sets. Both the training and validation sets are employed to train the CNN models while the testing set is utilised for evaluation by calculating error metrics such as mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE). Comparison with other machine learning approaches is performed to investigate the effectiveness of the CNN framework. Findings The CNN models are able to learn the trend of cable force sensor measurements with the ranges of MAE between 10.23 kN and 19.82 kN, MAPE between 0.434% and 0.536% and RMSE between 13.38 kN and 25.32 kN. In addition, the investigation discovers that the CNN-based model manages to outperform other machine learning models. Originality/value This work investigates, for the first time, how cable stress can be estimated using temperature variations. The study presents the first application of 1-D CNN regressor on data collected from a full-scale bridge. This work also evaluates the comparison between CNN regressor and other techniques, such as artificial neutral network (ANN) and linear regression, in estimating bridge cable stress, which has not been performed previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助yuanyuan采纳,获得10
刚刚
刚刚
1秒前
内向的芸发布了新的文献求助10
3秒前
4秒前
wanci应助asd采纳,获得30
4秒前
5秒前
nassim发布了新的文献求助10
6秒前
7秒前
zzz发布了新的文献求助10
10秒前
努力学习发布了新的文献求助10
12秒前
上官若男应助元烨华采纳,获得10
14秒前
17秒前
kido发布了新的文献求助10
21秒前
吡咯爱成环应助nassim采纳,获得10
24秒前
fanlee完成签到,获得积分10
27秒前
gnufgg完成签到,获得积分10
28秒前
30秒前
123发布了新的文献求助10
30秒前
31秒前
科目三应助kido采纳,获得10
31秒前
嗷嗷发布了新的文献求助10
36秒前
迷你的寒梅完成签到 ,获得积分10
37秒前
研友_X894JZ发布了新的文献求助10
37秒前
38秒前
43秒前
44秒前
45秒前
大喜完成签到,获得积分10
46秒前
柳七完成签到,获得积分20
46秒前
48秒前
49秒前
49秒前
淡然又菡发布了新的文献求助10
52秒前
午马未羊完成签到 ,获得积分10
52秒前
52秒前
lazydoggy发布了新的文献求助10
53秒前
54秒前
秋末发布了新的文献求助10
55秒前
isabella发布了新的文献求助10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455456
求助须知:如何正确求助?哪些是违规求助? 3050688
关于积分的说明 9022411
捐赠科研通 2739294
什么是DOI,文献DOI怎么找? 1502640
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350