亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Data-Driven Approach for the Newsvendor Problem with Nonparametric Information

非参数统计 报童模式 模棱两可 估计员 经验分布函数 计算机科学 概率分布 数学优化 计量经济学 数学 统计 供应链 政治学 程序设计语言 法学
作者
Liang Xu,Zheng Yi,Li Jiang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 504-523 被引量:15
标识
DOI:10.1287/msom.2020.0961
摘要

Problem definition: For the standard newsvendor problem with an unknown demand distribution, we develop an approach that uses data input to construct a distribution ambiguity set with the nonparametric characteristics of the true distribution, and we use it to make robust decisions. Academic/practical relevance: Empirical approach relies on historical data to estimate the true distribution. Although the estimated distribution converges to the true distribution, its performance with limited data is not guaranteed. Our approach generates robust decisions from a distribution ambiguity set that is constructed by data-driven estimators for nonparametric characteristics and includes the true distribution with the desired probability. It fits situations where data size is small. Methodology: We apply a robust optimization approach with nonparametric information. Results: Under a fixed method to partition the support of the demand, we construct a distribution ambiguity set, build a protection curve as a proxy for the worst-case distribution in the set, and use it to obtain a robust stocking quantity in closed form. Implementation-wise, we develop an adaptive method to continuously feed data to update partitions with a prespecified confidence level in their unbiasedness and adjust the protection curve to obtain robust decisions. We theoretically and experimentally compare the proposed approach with existing approaches. Managerial implications: Our nonparametric approach under adaptive partitioning guarantees that the realized average profit exceeds the worst-case expected profit with a high probability. Using real data sets from Kaggle.com, it can outperform existing approaches in yielding profit rate and stabilizing the generated profits, and the advantages are more prominent as the service ratio decreases. Nonparametric information is more valuable than parametric information in profit generation provided that the service requirement is not too high. Moreover, our proposed approach provides a means of combining nonparametric and parametric information in a robust optimization framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TR完成签到 ,获得积分10
10秒前
lalaheilala完成签到 ,获得积分10
13秒前
ophcyl完成签到,获得积分20
15秒前
苗条丹南完成签到 ,获得积分10
16秒前
隐形曼青应助胖橘采纳,获得10
16秒前
20秒前
linshunan完成签到 ,获得积分10
23秒前
小铁板发布了新的文献求助10
24秒前
25秒前
今后应助迅速枕头采纳,获得10
26秒前
ophcyl关注了科研通微信公众号
29秒前
星辰大海应助aronlhh采纳,获得10
30秒前
胖橘发布了新的文献求助10
32秒前
倦鸟余花发布了新的文献求助10
41秒前
小二郎应助Jyuanh采纳,获得10
51秒前
55秒前
55秒前
英俊的铭应助嗨好采纳,获得10
1分钟前
宋小葵发布了新的文献求助10
1分钟前
草木青发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
1分钟前
1分钟前
SciGPT应助宋小葵采纳,获得10
1分钟前
大模型应助宋小葵采纳,获得10
1分钟前
跳跃的黑猫完成签到,获得积分10
1分钟前
李健的粉丝团团长应助TR采纳,获得10
1分钟前
1分钟前
嗨好发布了新的文献求助10
1分钟前
1分钟前
倦鸟余花发布了新的文献求助10
1分钟前
ceeray23应助Jennie369采纳,获得10
1分钟前
1分钟前
小王完成签到 ,获得积分10
1分钟前
宋小葵完成签到,获得积分10
1分钟前
倦鸟余花发布了新的文献求助10
1分钟前
Katrina完成签到,获得积分10
1分钟前
小凯完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助CHAIZH采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422815
求助须知:如何正确求助?哪些是违规求助? 3023198
关于积分的说明 8903739
捐赠科研通 2710571
什么是DOI,文献DOI怎么找? 1486572
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330