Urban Bike Lane Planning with Bike Trajectories: Models, Algorithms, and a Real-World Case Study

启发式 计算机科学 多项式logistic回归 共享单车 TRIPS体系结构 交通规划 差异(会计) 大都市区 运筹学 运输工程 数学优化 业务 机器学习 工程类 数学 会计 病理 操作系统 并行计算 医学
作者
Sheng Liu,Zuo‐Jun Max Shen,Xiang Ji
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2500-2515 被引量:4
标识
DOI:10.1287/msom.2021.1023
摘要

Problem definition: We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which are made available by smart city infrastructure, such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. Academic/practical relevance: As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. Methodology: We formalize the bike lane planning problem in view of the cyclists’ utility functions and derive an integer optimization model to maximize the utility. To capture cyclists’ route choices, we develop a bilevel program based on the Multinomial Logit model. Results: We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route-choice-based planning model as a mixed-integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Managerial implications: Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists’ route choices. The proposed framework drives the data-driven urban-planning scheme in smart city operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethereal完成签到,获得积分10
1秒前
孙成成完成签到 ,获得积分10
2秒前
2秒前
4秒前
乐乐应助liu采纳,获得10
4秒前
李教授完成签到,获得积分10
5秒前
6秒前
6秒前
是啊余啊发布了新的文献求助10
6秒前
7秒前
7秒前
善学以致用应助weiyichen采纳,获得10
7秒前
8秒前
我是老大应助cathe采纳,获得10
9秒前
Jasper应助FYhan采纳,获得10
9秒前
黄饱饱发布了新的文献求助10
10秒前
10秒前
11秒前
liuguyue发布了新的文献求助10
11秒前
靜心发布了新的文献求助10
11秒前
zhengzetao发布了新的文献求助10
12秒前
医痞子发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
YGYANG完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
良辰应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496044
求助须知:如何正确求助?哪些是违规求助? 3080975
关于积分的说明 9165477
捐赠科研通 2773981
什么是DOI,文献DOI怎么找? 1522256
邀请新用户注册赠送积分活动 705797
科研通“疑难数据库(出版商)”最低求助积分说明 703085