Spectral clustering of high-dimensional data via Nonnegative Matrix Factorization

矩阵分解 非负矩阵分解 光谱聚类 聚类分析 计算机科学 基质(化学分析) 矩阵代数 因式分解 模式识别(心理学) 算法 人工智能 物理 材料科学 特征向量 量子力学 复合材料
作者
Shulin Wang,Fang Chen,Jianwen Fang
标识
DOI:10.1109/ijcnn.2015.7280465
摘要

Spectral clustering has become a popular subspace clustering algorithm in machine learning and data mining, which aims at finding a low-dimensional representation by utilizing the spectrum of a Laplacian matrix. It is a key to construct a discriminative and reliable affinity matrix for spectral clustering to achieve impressive clustering quality. As the real word data increase with higher dimension of features and larger number of data samples, it is a challenge to construct a good affinity matrix. Recently, sparse representation based spectral clustering (SRSC) has proven its efficiency for clustering and lead to promising clustering results in high-dimensional data. SRSC constructs affinity matrix by using sparse representation coefficient vectors. However, it is very time consuming. Additionally, the dimension of the sparse coefficient vector is equal to the number of samples, which may make the affinity matrix not discriminative enough. Therefore, it is inefficient to apply SRSC in clustering large scale datasets. To remedy these issues, we propose a new spectral clustering algorithm which constructs affinity matrix via Nonnegative Matrix Factorization (NMF) coefficient vectors. We call our algorithm as NMF based spectral clustering (NMFSC). The dimension of NMF coefficient vector is independent on the number of the samples and significantly smaller than that of sparse coefficient vector. Therefore, the affinity matrix can be constructed via NMF coefficient vector with much lower computational cost. The experimental results on several public gene expression profiling (GEP) datasets demonstrate the advantage of NMF coefficient over sparse representation coefficient and suggest that NMFSC is promising in clustering high-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Soin完成签到,获得积分10
刚刚
吱哦周发布了新的文献求助10
刚刚
1秒前
情怀应助maymei采纳,获得10
2秒前
晚秋北斗完成签到 ,获得积分10
2秒前
2秒前
安稳毕业实验完成签到 ,获得积分10
4秒前
4秒前
ludwig发布了新的文献求助10
6秒前
冷酷的树叶完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
9秒前
笑笑发布了新的文献求助30
10秒前
Tony完成签到,获得积分10
10秒前
10秒前
小蘑菇应助个性的汲采纳,获得10
10秒前
10秒前
11秒前
英俊的铭应助fh采纳,获得10
12秒前
12秒前
学术天后发布了新的文献求助30
12秒前
13秒前
13秒前
mSnBmaterial发布了新的文献求助10
14秒前
14秒前
露风清夏完成签到,获得积分10
15秒前
万能图书馆应助weilao采纳,获得10
17秒前
小白发布了新的文献求助10
17秒前
wwk关注了科研通微信公众号
18秒前
所所应助qwer采纳,获得10
18秒前
19秒前
露风清夏发布了新的文献求助30
19秒前
19秒前
英姑应助同瓜不同命采纳,获得10
19秒前
文艺鞋垫完成签到,获得积分10
19秒前
笑笑完成签到,获得积分10
19秒前
364zdk发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371