Spectral clustering of high-dimensional data via Nonnegative Matrix Factorization

矩阵分解 非负矩阵分解 光谱聚类 聚类分析 计算机科学 基质(化学分析) 矩阵代数 因式分解 模式识别(心理学) 算法 人工智能 物理 材料科学 特征向量 量子力学 复合材料
作者
Shulin Wang,Fang Chen,Jianwen Fang
标识
DOI:10.1109/ijcnn.2015.7280465
摘要

Spectral clustering has become a popular subspace clustering algorithm in machine learning and data mining, which aims at finding a low-dimensional representation by utilizing the spectrum of a Laplacian matrix. It is a key to construct a discriminative and reliable affinity matrix for spectral clustering to achieve impressive clustering quality. As the real word data increase with higher dimension of features and larger number of data samples, it is a challenge to construct a good affinity matrix. Recently, sparse representation based spectral clustering (SRSC) has proven its efficiency for clustering and lead to promising clustering results in high-dimensional data. SRSC constructs affinity matrix by using sparse representation coefficient vectors. However, it is very time consuming. Additionally, the dimension of the sparse coefficient vector is equal to the number of samples, which may make the affinity matrix not discriminative enough. Therefore, it is inefficient to apply SRSC in clustering large scale datasets. To remedy these issues, we propose a new spectral clustering algorithm which constructs affinity matrix via Nonnegative Matrix Factorization (NMF) coefficient vectors. We call our algorithm as NMF based spectral clustering (NMFSC). The dimension of NMF coefficient vector is independent on the number of the samples and significantly smaller than that of sparse coefficient vector. Therefore, the affinity matrix can be constructed via NMF coefficient vector with much lower computational cost. The experimental results on several public gene expression profiling (GEP) datasets demonstrate the advantage of NMF coefficient over sparse representation coefficient and suggest that NMFSC is promising in clustering high-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美行云完成签到,获得积分10
1秒前
xiaozhu发布了新的文献求助10
4秒前
shuai发布了新的文献求助10
4秒前
LMZ发布了新的文献求助10
4秒前
NexusExplorer应助CO2采纳,获得10
4秒前
5秒前
踏实天空应助心随以动采纳,获得10
10秒前
HelloJoey完成签到,获得积分10
10秒前
10秒前
条博士完成签到,获得积分10
11秒前
12秒前
午见千山应助JIE采纳,获得10
12秒前
考拉完成签到 ,获得积分10
13秒前
13秒前
hb完成签到,获得积分10
15秒前
xiaozhu完成签到,获得积分10
15秒前
blue发布了新的文献求助10
16秒前
忧郁衬衫完成签到 ,获得积分10
17秒前
17秒前
追寻完成签到,获得积分20
17秒前
17秒前
无糖零脂发布了新的文献求助10
18秒前
20秒前
小姜发布了新的文献求助10
20秒前
深情安青应助Kem采纳,获得10
20秒前
躬身入局发布了新的文献求助30
22秒前
23秒前
CO2发布了新的文献求助10
24秒前
24秒前
FashionBoy应助呼啦啦采纳,获得10
26秒前
a成发布了新的文献求助10
26秒前
领导范儿应助wwwwww采纳,获得10
28秒前
Choi发布了新的文献求助10
28秒前
Furmark_14完成签到,获得积分10
29秒前
HelloJoey发布了新的文献求助10
30秒前
复杂函完成签到,获得积分10
30秒前
32秒前
瑶啊瑶完成签到,获得积分10
32秒前
CO2完成签到,获得积分10
33秒前
Henry给qiuqiu120234978的求助进行了留言
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139146
求助须知:如何正确求助?哪些是违规求助? 2790083
关于积分的说明 7793577
捐赠科研通 2446452
什么是DOI,文献DOI怎么找? 1301175
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102