There and Back Again: Revisiting Backpropagation Saliency Methods

人工神经网络 模式识别(心理学) 深度学习 突出 深层神经网络 计算机视觉
作者
Sylvestre-Alvise Rebuffi,Ruth Fong,Xu Ji,Andrea Vedaldi
出处
期刊:Computer Vision and Pattern Recognition 卷期号:: 8839-8848 被引量:36
标识
DOI:10.1109/cvpr42600.2020.00886
摘要

Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample. A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient. Despite much research on such methods, relatively little work has been done to clarify the differences between such methods as well as the desiderata of these techniques. Thus, there is a need for rigorously understanding the relationships between different methods as well as their failure modes. In this work, we conduct a thorough analysis of backpropagation-based saliency methods and propose a single framework under which several such methods can be unified. As a result of our study, we make three additional contributions. First, we use our framework to propose NormGrad, a novel saliency method based on the spatial contribution of gradients of convolutional weights. Second, we combine saliency maps at different layers to test the ability of saliency methods to extract complementary information at different network levels (e.g.~trading off spatial resolution and distinctiveness) and we explain why some methods fail at specific layers (e.g., Grad-CAM anywhere besides the last convolutional layer). Third, we introduce a class-sensitivity metric and a meta-learning inspired paradigm applicable to any saliency method for improving sensitivity to the output class being explained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助99668采纳,获得10
刚刚
gchen001完成签到,获得积分10
1秒前
隐形曼青应助qingqing采纳,获得10
1秒前
欧冶子oO发布了新的文献求助10
1秒前
xiaozhou完成签到,获得积分10
2秒前
聚砂成塔完成签到,获得积分10
2秒前
3秒前
5秒前
XD完成签到,获得积分20
5秒前
喵呜完成签到 ,获得积分10
5秒前
6秒前
7秒前
留下就好完成签到 ,获得积分10
7秒前
都大锤发布了新的文献求助30
7秒前
打打应助付银薇采纳,获得10
9秒前
10秒前
XD发布了新的文献求助10
10秒前
搜集达人应助一只小蜗牛采纳,获得10
11秒前
晨雨完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
Fazie完成签到 ,获得积分10
14秒前
15秒前
15秒前
黎明完成签到,获得积分10
15秒前
红红酱完成签到,获得积分10
17秒前
帅哥完成签到,获得积分10
17秒前
xiaoyu完成签到,获得积分10
17秒前
慎默完成签到,获得积分10
17秒前
海藻发布了新的文献求助10
17秒前
冷冷发布了新的文献求助10
19秒前
19秒前
流觞曲水发布了新的文献求助10
20秒前
asd发布了新的文献求助10
20秒前
Orange应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得30
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765