人工智能
高光谱成像
支持向量机
随机森林
计算机科学
朴素贝叶斯分类器
模式识别(心理学)
计算机视觉
作者
Ximing Zhou,Ling Ma,Walliam Brown,James Little,Amy Chen,Larry L. Myers,Baran D. Sumer,Baowei Fei
摘要
The aim of this study is to incorporate polarized hyperspectral imaging (PHSI) with machine learning for automatic detection of head and neck squamous cell carcinoma (SCC) on hematoxylin and eosin (H&E) stained tissue slides. A polarized hyperspectral imaging microscope had been developed in our group. In this paper, we imaged 20 H&E stained tissue slides from 10 patients with SCC of the larynx by the PHSI microscope. Several machine learning algorithms, including support vector machine (SVM), random forest, Gaussian naive Bayes, and logistic regression, were applied to the collected image data for the automatic detection of SCC on the H&E stained tissue slides. The performance of these methods was compared among the collected PHSI data, the pseudo-RGB images generated from the PHSI data, and the PHSI data after applying the principal component analysis (PCA) transformation. The results suggest that SVM is a superior classifier for the classification task based on the PHSI data cubes compared to the other three classifiers. The incorporate of four Stokes vector parameters improved the classification accuracy. Finally, the PCA transformed image data did not improve the accuracy as it might lose some important information from the original PHSI data. The preliminary results show that polarized hyperspectral imaging can have many potential applications in digital pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI