Modified Magnitude-Phase Spectrum Information for Spoofing Detection

欺骗攻击 计算机科学 震级(天文学) 倍频程(电子) 人工智能 特征(语言学) 混合模型 语音识别 模式识别(心理学) 物理 天文 计算机网络 语言学 光学 哲学
作者
Jian Yang,Hongji Wang,Rohan Kumar Das,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1065-1078 被引量:24
标识
DOI:10.1109/taslp.2021.3060810
摘要

Most of the existing feature representations for spoofing countermeasures consider information either from the magnitude or phase spectrum. We hypothesize that both magnitude and phase spectra can be beneficial for spoofing detection (SD) when collectively used to capture the signal artifacts. In this work, we propose a novel feature referred to as modified magnitude-phase spectrum (MMPS) to capture both magnitude and phase information from the speech signal. The constant-Q transform is used to obtain the magnitude and phase information in terms of MMPS, which can be denoted as CQT-MMPS. We then use this information for the proposal of a handcrafted feature, namely, constant-Q modified octave coefficients (CQMOC). To evaluate the proposed CQT-MMPS and CQMOC features, three classic anti-spoofing models are adopted, including the Gaussian mixture model (GMM), the light CNN (LCNN) and the ResNet. Additionally, since there is usually no prior knowledge about the spoofing kind in real-world applications, two novel methods referred to as three-class classifiers with maximum spoofing-score (TCMS) and multi-task learning (MTL) are designed for unknown-kind SD (UKSD). The experimental results on ASVspoof 2019 corpus show that CQMOC outperforms most of the commonly-used handcrafted features, and the CQT-based MMPS performs better than the magnitude-phase spectrum and the commonly-used log power spectrum. Further, the MMPS-based systems can achieve comparable or even better performance when compared with the state-of-the-art systems. We find that the newly-designed TCMS and MTL methods outperform the combination-based method for UKSD and meanwhile, generalize much better than the respective-kind-based methods in cross-spoofing-kind evaluation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君莫笑完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
cc完成签到,获得积分20
1秒前
屿溡完成签到,获得积分10
1秒前
LL发布了新的文献求助10
1秒前
2秒前
丹dan完成签到,获得积分10
2秒前
陈平安完成签到,获得积分10
2秒前
2秒前
马dong完成签到,获得积分20
2秒前
优美机器猫完成签到,获得积分20
3秒前
ding应助琦琦采纳,获得10
3秒前
小柿子完成签到,获得积分10
3秒前
小柚子完成签到,获得积分10
4秒前
嘛籽m完成签到 ,获得积分10
4秒前
彭于晏应助外向以冬采纳,获得10
4秒前
Lo完成签到,获得积分10
4秒前
打打应助leeteukxx采纳,获得10
5秒前
田様应助勤恳的夏之采纳,获得10
5秒前
6秒前
李健应助华仔采纳,获得20
6秒前
善学以致用应助行7采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
柠檬九分酸完成签到,获得积分10
7秒前
Lee发布了新的文献求助10
7秒前
SciGPT应助Bonaventure采纳,获得10
7秒前
自觉的傥完成签到,获得积分10
7秒前
7秒前
hjx完成签到,获得积分10
8秒前
大模型应助银雀w采纳,获得10
8秒前
NING应助神勇初瑶采纳,获得10
8秒前
lott发布了新的文献求助10
8秒前
Xilli完成签到 ,获得积分10
9秒前
大个应助sdfg采纳,获得10
9秒前
大宽完成签到,获得积分10
9秒前
pluto应助教授王采纳,获得10
9秒前
mm应助教授王采纳,获得10
9秒前
GreenV完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619