Modified Magnitude-Phase Spectrum Information for Spoofing Detection

欺骗攻击 计算机科学 震级(天文学) 倍频程(电子) 人工智能 特征(语言学) 混合模型 语音识别 模式识别(心理学) 物理 天文 计算机网络 语言学 光学 哲学
作者
Jian Yang,Hongji Wang,Rohan Kumar Das,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1065-1078 被引量:24
标识
DOI:10.1109/taslp.2021.3060810
摘要

Most of the existing feature representations for spoofing countermeasures consider information either from the magnitude or phase spectrum. We hypothesize that both magnitude and phase spectra can be beneficial for spoofing detection (SD) when collectively used to capture the signal artifacts. In this work, we propose a novel feature referred to as modified magnitude-phase spectrum (MMPS) to capture both magnitude and phase information from the speech signal. The constant-Q transform is used to obtain the magnitude and phase information in terms of MMPS, which can be denoted as CQT-MMPS. We then use this information for the proposal of a handcrafted feature, namely, constant-Q modified octave coefficients (CQMOC). To evaluate the proposed CQT-MMPS and CQMOC features, three classic anti-spoofing models are adopted, including the Gaussian mixture model (GMM), the light CNN (LCNN) and the ResNet. Additionally, since there is usually no prior knowledge about the spoofing kind in real-world applications, two novel methods referred to as three-class classifiers with maximum spoofing-score (TCMS) and multi-task learning (MTL) are designed for unknown-kind SD (UKSD). The experimental results on ASVspoof 2019 corpus show that CQMOC outperforms most of the commonly-used handcrafted features, and the CQT-based MMPS performs better than the magnitude-phase spectrum and the commonly-used log power spectrum. Further, the MMPS-based systems can achieve comparable or even better performance when compared with the state-of-the-art systems. We find that the newly-designed TCMS and MTL methods outperform the combination-based method for UKSD and meanwhile, generalize much better than the respective-kind-based methods in cross-spoofing-kind evaluation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的白易完成签到,获得积分10
刚刚
勤劳冰烟完成签到,获得积分10
2秒前
雨雾完成签到,获得积分10
2秒前
斯文败类应助凶狠的乐巧采纳,获得10
2秒前
2秒前
生言生语完成签到,获得积分10
2秒前
alick发布了新的文献求助10
3秒前
钰c发布了新的文献求助10
3秒前
Maggie完成签到 ,获得积分10
3秒前
四月是一只爱猫的羊完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
打打应助嘟嘟请让一让采纳,获得10
5秒前
专一完成签到,获得积分10
5秒前
Lucas应助九川采纳,获得10
5秒前
yl关闭了yl文献求助
5秒前
6秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
6秒前
6秒前
丘比特应助卡卡采纳,获得10
7秒前
7秒前
毛毛发布了新的文献求助10
7秒前
ljx完成签到 ,获得积分10
7秒前
活力山蝶应助小白采纳,获得10
10秒前
xg完成签到,获得积分10
10秒前
Zezezee发布了新的文献求助10
10秒前
笑点低可乐完成签到,获得积分10
11秒前
11秒前
坚强的樱发布了新的文献求助10
11秒前
11秒前
求解限发布了新的文献求助160
11秒前
12秒前
白宝宝北北白应助XIN采纳,获得10
12秒前
wenjian发布了新的文献求助10
12秒前
13秒前
华仔应助jy采纳,获得10
13秒前
hoongyan完成签到 ,获得积分10
13秒前
Ava应助aoxiangcaizi12采纳,获得10
15秒前
Amai完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794