Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 2866-2876 被引量:32
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyq完成签到,获得积分10
刚刚
刚刚
King完成签到,获得积分10
刚刚
沉默的怀绿完成签到,获得积分10
刚刚
1秒前
尾巴完成签到,获得积分10
1秒前
威武的之桃完成签到 ,获得积分20
1秒前
1秒前
宁远发布了新的文献求助10
1秒前
lewis17发布了新的文献求助10
2秒前
wnx001111完成签到,获得积分10
2秒前
cytoy发布了新的文献求助10
2秒前
失眠语海完成签到,获得积分10
2秒前
3秒前
ZIS发布了新的文献求助10
3秒前
栗子发布了新的文献求助30
3秒前
3秒前
槑槑姊完成签到,获得积分10
3秒前
小马甲应助学渣采纳,获得10
4秒前
4秒前
斯文败类应助勤奋的青梦采纳,获得30
4秒前
4秒前
5秒前
5秒前
6秒前
lin完成签到 ,获得积分10
6秒前
qinswzaiyu完成签到,获得积分10
6秒前
6秒前
木木完成签到 ,获得积分10
6秒前
小飞鼠发布了新的文献求助10
6秒前
科研通AI2S应助Aprilapple采纳,获得10
6秒前
7秒前
情怀应助但小安采纳,获得10
7秒前
是小雨呀完成签到,获得积分10
7秒前
呆呆发布了新的文献求助10
7秒前
45275357完成签到,获得积分10
7秒前
帽子和衣服23完成签到,获得积分10
8秒前
赘婿应助神勇的大凄采纳,获得30
8秒前
轻松的忆雪完成签到,获得积分10
8秒前
哼哼哒发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836