Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 2866-2876 被引量:21
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助LD采纳,获得10
1秒前
2秒前
研友_VZG7GZ应助zzyfsh采纳,获得10
2秒前
Estrella应助阔达如凡采纳,获得10
3秒前
热心的夜安完成签到,获得积分10
3秒前
wg发布了新的文献求助10
4秒前
英俊的铭应助贺小刚采纳,获得30
5秒前
梦旋完成签到 ,获得积分10
5秒前
6秒前
6秒前
么么叽发布了新的文献求助10
8秒前
10秒前
Dr.c发布了新的文献求助10
10秒前
11秒前
dmsoli发布了新的文献求助10
14秒前
LANER完成签到 ,获得积分10
15秒前
英姑应助IAMXC采纳,获得10
15秒前
GJL关注了科研通微信公众号
15秒前
搜集达人应助Dr.c采纳,获得10
16秒前
Dr.Xu发布了新的文献求助10
16秒前
cach发布了新的文献求助10
17秒前
是个小朋友啊应助武雨寒采纳,获得10
19秒前
天天快乐应助wg采纳,获得10
19秒前
潇洒的诗桃应助学术混子采纳,获得10
19秒前
包容的初南完成签到,获得积分10
21秒前
21秒前
22秒前
汉堡包应助科研牛马采纳,获得10
24秒前
许多多完成签到,获得积分10
24秒前
燕海雪完成签到,获得积分10
25秒前
龙之介完成签到,获得积分10
25秒前
希望天下0贩的0应助娴儿采纳,获得10
26秒前
26秒前
李李发布了新的文献求助10
26秒前
共享精神应助LUMEN采纳,获得10
26秒前
27秒前
27秒前
阔达如凡完成签到,获得积分20
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413