Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 2866-2876 被引量:32
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shasha完成签到,获得积分10
刚刚
魅域苍穹发布了新的文献求助10
刚刚
linjiaxin发布了新的文献求助10
刚刚
赵祎完成签到,获得积分10
2秒前
经小夏发布了新的文献求助10
3秒前
3秒前
4秒前
lll完成签到,获得积分10
4秒前
善学以致用应助王阳洋采纳,获得10
4秒前
4秒前
胡涵暄发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
斐然诗完成签到,获得积分10
6秒前
morning完成签到,获得积分10
8秒前
ykq发布了新的文献求助10
9秒前
赵梦妍完成签到,获得积分10
9秒前
kaia发布了新的文献求助10
9秒前
勇敢的心完成签到,获得积分10
9秒前
11秒前
11秒前
英俊的铭应助经小夏采纳,获得10
11秒前
理想发布了新的文献求助10
11秒前
NLNL发布了新的文献求助10
12秒前
Zqs完成签到,获得积分10
12秒前
laruijoint完成签到,获得积分10
12秒前
13秒前
annafan完成签到,获得积分10
14秒前
14秒前
ykq完成签到,获得积分20
14秒前
14秒前
hs完成签到,获得积分10
14秒前
薛之谦的猫应助黎书禾采纳,获得10
15秒前
16秒前
隐形曼青应助olekravchenko采纳,获得10
16秒前
17秒前
MAK完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930