Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 2866-2876 被引量:32
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的蓝血完成签到,获得积分10
刚刚
Maestro_S发布了新的文献求助10
1秒前
小吃货完成签到,获得积分10
1秒前
1秒前
映城应助sakiecon采纳,获得30
1秒前
1秒前
oRoooo完成签到,获得积分10
2秒前
2秒前
2秒前
HI完成签到 ,获得积分10
2秒前
3秒前
一科研土豆完成签到,获得积分10
3秒前
提桶跑路完成签到,获得积分10
3秒前
舒心的耷发布了新的文献求助30
3秒前
小董完成签到,获得积分10
4秒前
栓儿完成签到 ,获得积分10
5秒前
hxpxp发布了新的文献求助10
5秒前
HYD完成签到,获得积分10
5秒前
镜中月完成签到,获得积分10
5秒前
wy18567337203完成签到,获得积分10
5秒前
牛牛的牛牛完成签到 ,获得积分10
5秒前
5秒前
111发布了新的文献求助10
6秒前
玻璃球完成签到 ,获得积分10
6秒前
聪慧的白猫完成签到,获得积分10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
innate完成签到,获得积分20
7秒前
LEO完成签到,获得积分10
8秒前
SciGPT应助boomboom采纳,获得10
8秒前
8秒前
阿尔法贝塔完成签到 ,获得积分10
9秒前
376完成签到,获得积分10
9秒前
ACMI发布了新的文献求助10
9秒前
肖战战完成签到 ,获得积分10
9秒前
dreamvssnow发布了新的文献求助10
10秒前
科研通AI6应助Mandy采纳,获得10
10秒前
tsytwn发布了新的文献求助10
10秒前
zhang完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568487
求助须知:如何正确求助?哪些是违规求助? 4653122
关于积分的说明 14704067
捐赠科研通 4594924
什么是DOI,文献DOI怎么找? 2521391
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463792