Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 2866-2876 被引量:32
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄院士发布了新的文献求助10
1秒前
1秒前
km完成签到,获得积分10
1秒前
chenlei完成签到,获得积分10
1秒前
桐桐应助XX采纳,获得10
2秒前
2秒前
善良的樱完成签到 ,获得积分10
3秒前
英俊的铭应助孙淳采纳,获得10
3秒前
4秒前
赘婿应助hzy采纳,获得10
5秒前
5秒前
5秒前
YuLu发布了新的文献求助10
6秒前
6秒前
nn应助酷炫迎波采纳,获得10
7秒前
7秒前
Orange应助研友_84WJXZ采纳,获得10
8秒前
宋紫馨发布了新的文献求助10
9秒前
科研通AI6应助heaven采纳,获得10
9秒前
wangpinyl完成签到,获得积分10
9秒前
WZY发布了新的文献求助10
10秒前
11秒前
jinx123456发布了新的文献求助10
11秒前
11秒前
13秒前
浮游应助爱撒娇的紫菜采纳,获得10
14秒前
14秒前
15秒前
Puffkten完成签到 ,获得积分10
15秒前
受伤小之完成签到,获得积分10
15秒前
15秒前
所所应助丝竹丛中墨未干采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
XXG完成签到,获得积分10
17秒前
Alan发布了新的文献求助10
18秒前
研友_LXOrO8发布了新的文献求助10
18秒前
18秒前
浮游应助ZYB采纳,获得10
18秒前
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584225
求助须知:如何正确求助?哪些是违规求助? 4667748
关于积分的说明 14769485
捐赠科研通 4610238
什么是DOI,文献DOI怎么找? 2529727
邀请新用户注册赠送积分活动 1498707
关于科研通互助平台的介绍 1467270