Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs

医学 神经组阅片室 接收机工作特性 阶段(地层学) 放射科 介入放射学 切断 曲线下面积 肺癌 医学诊断 核医学 内科学 神经学 古生物学 物理 精神科 生物 量子力学
作者
Hyewon Choi,Hyungjin Kim,Wonju Hong,Jongsoo Park,Eui Jin Hwang,Chang Min Park,Young Tae Kim,Jin Mo Goo
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (5): 2866-2876 被引量:32
标识
DOI:10.1007/s00330-020-07431-2
摘要

To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67–0.84), which was comparable to those of board-certified radiologists (AUC, 0.73–0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p   0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03–1.11; p < 0.001). The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHCL完成签到 ,获得积分10
2秒前
哈基米德应助一颗小番茄采纳,获得30
2秒前
矮小的天菱完成签到,获得积分10
3秒前
长安发布了新的文献求助10
3秒前
6秒前
ddddddd完成签到,获得积分20
7秒前
章半仙完成签到,获得积分10
8秒前
9秒前
11秒前
amberzyc应助小远采纳,获得10
12秒前
qiongqiong完成签到,获得积分10
13秒前
淡定的依瑶完成签到,获得积分10
14秒前
江璃发布了新的文献求助10
16秒前
17秒前
18秒前
美丽的安珊完成签到,获得积分10
19秒前
19秒前
21秒前
Gilana完成签到,获得积分10
21秒前
xyh发布了新的文献求助10
21秒前
江璃完成签到,获得积分10
22秒前
TT发布了新的文献求助10
22秒前
美梦成真完成签到,获得积分10
23秒前
Gakay完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
szj完成签到,获得积分0
25秒前
旦皋完成签到,获得积分10
25秒前
赘婿应助花壳在逃野猪采纳,获得10
26秒前
卷卷完成签到,获得积分10
28秒前
JSY完成签到 ,获得积分20
28秒前
xyh完成签到,获得积分10
29秒前
小曾应助Florencia采纳,获得10
30秒前
神外王001完成签到 ,获得积分10
30秒前
35秒前
你是谁完成签到,获得积分10
36秒前
majf完成签到,获得积分10
37秒前
linhanwenzhou完成签到,获得积分10
37秒前
JSY关注了科研通微信公众号
37秒前
853225598完成签到,获得积分10
37秒前
798完成签到,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029