错误发现率
事件(粒子物理)
计算机科学
价值(数学)
不利影响
事件数据
数据挖掘
统计
医学
数学
内科学
机器学习
基因
物理
化学
分析
量子力学
生物化学
作者
Rachel Phillips,Suzie Cro
出处
期刊:RePEc: Research Papers in Economics - RePEc
日期:2020-02-22
摘要
aefdr performs a false discovery rate (FDR) p-value adjustment for adverse event data where events are nested within bodysystems from a two-arm clinical trial as proposed by Mehrotra and Adewale (Stat. in Med., 2012). The FDR procedure is a two-step approach that utilises the structure of adverse event data to adjust p-values to reduce the false discovery rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI