Protein Classifier for Thyroid Nodules Learned from Rapidly Acquired Proteotypes

甲状腺结节 分类器(UML) 甲状腺 诊断准确性 细胞病理学 人工智能 放射科 医学 计算机科学 病理 内科学 细胞学
作者
Yaoting Sun,Sathiyamoorthy Selvarajan,Zelin Zang,Wei Liu,Yi Zhu,Hao Zhang,Hao Chen,Xue Cai,Huanhuan Gao,Zhicheng Wu,Lirong Chen,Xiaodong Teng,Yongfu Zhao,Sangeeta Mantoo,Tony Kiat Hon Lim,Bhuvaneswari Hariraman,Serene Yeow,Syed Muhammad Fahmy bin Syed Abdillah,Sze Sing Lee,Guan Ruan,Qiushi Zhang,Tiansheng Zhu,Weibin Wang,Guangzhi Wang,Junhong Xiao,Yi He,Zhihong Wang,Wei Sun,Yuan Qin,Qi Xiao,Xu Zheng,Linyan Wang,Xi Zheng,Kailun Xu,Yingkuan Shao,Kexin Liu,Shu Zheng,Ruedi Aebersold,Stan Z. Li,Oi Lian Kon,N. Gopalakrishna Iyer,Tiannan Guo
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:14
标识
DOI:10.1101/2020.04.09.20059741
摘要

SUMMARY Up to 30% of thyroid nodules cannot be accurately classified as benign or malignant by cytopathology. Diagnostic accuracy can be improved by nucleic acid-based testing, yet a sizeable number of diagnostic thyroidectomies remains unavoidable. In order to develop a protein classifier for thyroid nodules, we analyzed the quantitative proteomes of 1,725 retrospective thyroid tissue samples from 578 patients using pressure-cycling technology and data-independent acquisition mass spectrometry. With artificial neural networks, a classifier of 14 proteins achieved over 93% accuracy in classifying malignant thyroid nodules. This classifier was validated in retrospective samples of 271 patients (91% accuracy), and prospective samples of 62 patients (88% accuracy) from four independent centers. These rapidly acquired proteotypes and artificial neural networks supported the establishment of an effective protein classifier for classifying thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻宛海完成签到 ,获得积分20
刚刚
刚刚
1秒前
sh131完成签到,获得积分10
1秒前
2秒前
ruochenzu发布了新的文献求助10
2秒前
3秒前
wanci应助笑点低绝义采纳,获得10
3秒前
撒个人发布了新的文献求助10
3秒前
米斯达发布了新的文献求助10
3秒前
3秒前
4秒前
louyang完成签到,获得积分20
4秒前
4秒前
6秒前
NIUB发布了新的文献求助10
6秒前
7秒前
嘉棯发布了新的文献求助10
8秒前
Phantom1234发布了新的文献求助10
8秒前
9秒前
9秒前
浮游应助超级的盼山采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助Xinwen0322采纳,获得10
10秒前
wanwan发布了新的文献求助30
11秒前
陈打铁完成签到,获得积分10
11秒前
11秒前
11秒前
所所应助CHOU采纳,获得10
12秒前
12秒前
13秒前
SciGPT应助文献查找采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
Lucas应助等待宛白采纳,获得10
13秒前
14秒前
YSL发布了新的文献求助10
14秒前
15秒前
15秒前
鸟鸣完成签到,获得积分10
16秒前
frx1996完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605334
求助须知:如何正确求助?哪些是违规求助? 4013256
关于积分的说明 12426716
捐赠科研通 3693913
什么是DOI,文献DOI怎么找? 2036704
邀请新用户注册赠送积分活动 1069652
科研通“疑难数据库(出版商)”最低求助积分说明 953966