特征(语言学)
生物
基因
细胞
鉴定(生物学)
计算生物学
聚类分析
电池类型
数据集
遗传学
人工智能
计算机科学
语言学
植物
哲学
作者
Zhichao Miao,Pablo Moreno,Ni Huang,Irene Papatheodorou,Alvis Brāzma,Sarah A. Teichmann
出处
期刊:Nature Methods
[Springer Nature]
日期:2020-05-18
卷期号:17 (6): 621-628
被引量:107
标识
DOI:10.1038/s41592-020-0825-9
摘要
We present the Single-Cell Clustering Assessment Framework, a method for the automated identification of putative cell types from single-cell RNA sequencing (scRNA-seq) data. By iteratively applying a machine learning approach to a given set of cells, we simultaneously identify distinct cell groups and a weighted list of feature genes for each group. The differentially expressed feature genes discriminate the given cell group from other cells. Each such group of cells corresponds to a putative cell type or state, characterized by the feature genes as markers. Benchmarking using expert-annotated scRNA-seq datasets shows that our method automatically identifies the ‘ground truth’ cell assignments with high accuracy. SCCAF automates the discovery of putative cell types and their feature genes using scRNA-seq data.
科研通智能强力驱动
Strongly Powered by AbleSci AI