估计员
数学
一致性(知识库)
核密度估计
混合(物理)
应用数学
强一致性
条件概率分布
统计
核(代数)
一致估计量
不变估计量
渐近分布
有效估计量
最小方差无偏估计量
离散数学
量子力学
物理
作者
Ali Laksaci,Salah Khardani,Sihem Semmar
标识
DOI:10.1080/03610926.2020.1764038
摘要
In this work, we extend to the case of the strong mixing data the results of Khardani and Semmar. A kernel-type recursive estimator of the conditional density function is introduced. We study the properties of these estimators and compare them with Rosemblatt's nonrecursive estimator. Then, a strong consistency rate as well as the asymptotic distribution of the estimator are established under an α-mixing condition. A simulation study is considered to show the performance of the proposed estimator.
科研通智能强力驱动
Strongly Powered by AbleSci AI