亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China

城市化 表土 环境科学 土壤水分 土工试验 环境化学 土壤pH值 土壤科学 环境工程 化学 生态学 生物
作者
Huan Zhang,Shihua Yin,Yihua Chen,Shuangshuang Shao,Jingtao Wu,Manman Fan,Fu‐Rong Chen,Chao Gao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:273: 122858-122858 被引量:107
标识
DOI:10.1016/j.jclepro.2020.122858
摘要

Accelerated urbanization has resulted in the accumulation of considerable amounts of heavy metals (HMs) in urban soils. It is important to identify correlations between the urbanization process and HM accumulation in the soil and predict the spatial distribution of soil HMs based on variables related to urban expansion, so that strategies for urban soil management can be created. However, accurate predictions of urban soil HMs based on predictors associated with urbanization are still lacking. In this study, 251 topsoil samples (0–20 cm) were collected using the grid-sampling method (2 km × 2 km) in a rapid urbanization area (Hefei City, China). The concentrations of As, Zn, Pb, Hg, Ni, Cu, Cr, and Cd in the soil, as well as some attributes of soil that were impacted by urbanization were determined. The areas of different land use types in a specific grid, urbanization history, and soil properties of the site were used as predictors. The overall distribution of soil HMs were then predicted using random forest (RF), artificial neural network (ANN), and support vector machine (SVM) models. The results showed that the concentrations of As, Zn, Pb, Hg, Cu, and Cd increased significantly with an increase in urbanization history. However, the highest concentrations of Ni and Cr were observed in soils between the 2nd and 3rd ring road. According to the RF model, soil CaO, OM, sulfur, phosphorus, and surrounded built-up area were identified as the most important factors for soil Zn, Pb, Cu, and Cd, indicating a predominant anthropogenic control of these HMs. The level of Hg in the soil was also likely related to human emissions because of the importance of urbanization history and the surrounded constructing area (CA) in governing the spatial distribution of Hg. The influence of Fe2O3, Al2O3, and SiO2 on soil As, Ni, and Cr indicates their primary origin from natural processes. In comparison, the SVM and RF model revealed higher R2 and lower error indices than those of the ANN model, suggesting that SVM and RF have the ability to predict urban soil HMs satisfactorily. By using independent predictors for soil HM prediction, ANN, RF, and SVM also produced significant predictions. Furthermore, the performance of the ANN, RF, SVM models were expected to be improved by introducing variables that can reflect the sources, transport, and retention of HMs in urban soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_nqrKQZ发布了新的文献求助30
3秒前
科研通AI6应助星晴采纳,获得10
8秒前
丰富靖琪完成签到 ,获得积分10
10秒前
Dreamchaser完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得10
36秒前
43秒前
44秒前
50秒前
biebie发布了新的文献求助20
55秒前
简单完成签到 ,获得积分10
57秒前
海风吹过小镇完成签到 ,获得积分10
59秒前
biebie完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
星晴发布了新的文献求助10
2分钟前
3分钟前
miracle关注了科研通微信公众号
3分钟前
miracle发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Y8发布了新的文献求助10
3分钟前
3分钟前
orixero应助星晴采纳,获得10
3分钟前
Y8完成签到,获得积分10
3分钟前
4分钟前
4分钟前
矮小的猕猴桃完成签到,获得积分10
4分钟前
GingerF应助abcd采纳,获得60
4分钟前
GingerF应助abcd采纳,获得70
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622308
关于积分的说明 14582538
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938