已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China

城市化 表土 环境科学 土壤水分 土工试验 环境化学 土壤pH值 土壤科学 环境工程 化学 生态学 生物
作者
Huan Zhang,Shihua Yin,Yihua Chen,Shuangshuang Shao,Jingtao Wu,Manman Fan,Fu‐Rong Chen,Chao Gao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:273: 122858-122858 被引量:107
标识
DOI:10.1016/j.jclepro.2020.122858
摘要

Accelerated urbanization has resulted in the accumulation of considerable amounts of heavy metals (HMs) in urban soils. It is important to identify correlations between the urbanization process and HM accumulation in the soil and predict the spatial distribution of soil HMs based on variables related to urban expansion, so that strategies for urban soil management can be created. However, accurate predictions of urban soil HMs based on predictors associated with urbanization are still lacking. In this study, 251 topsoil samples (0–20 cm) were collected using the grid-sampling method (2 km × 2 km) in a rapid urbanization area (Hefei City, China). The concentrations of As, Zn, Pb, Hg, Ni, Cu, Cr, and Cd in the soil, as well as some attributes of soil that were impacted by urbanization were determined. The areas of different land use types in a specific grid, urbanization history, and soil properties of the site were used as predictors. The overall distribution of soil HMs were then predicted using random forest (RF), artificial neural network (ANN), and support vector machine (SVM) models. The results showed that the concentrations of As, Zn, Pb, Hg, Cu, and Cd increased significantly with an increase in urbanization history. However, the highest concentrations of Ni and Cr were observed in soils between the 2nd and 3rd ring road. According to the RF model, soil CaO, OM, sulfur, phosphorus, and surrounded built-up area were identified as the most important factors for soil Zn, Pb, Cu, and Cd, indicating a predominant anthropogenic control of these HMs. The level of Hg in the soil was also likely related to human emissions because of the importance of urbanization history and the surrounded constructing area (CA) in governing the spatial distribution of Hg. The influence of Fe2O3, Al2O3, and SiO2 on soil As, Ni, and Cr indicates their primary origin from natural processes. In comparison, the SVM and RF model revealed higher R2 and lower error indices than those of the ANN model, suggesting that SVM and RF have the ability to predict urban soil HMs satisfactorily. By using independent predictors for soil HM prediction, ANN, RF, and SVM also produced significant predictions. Furthermore, the performance of the ANN, RF, SVM models were expected to be improved by introducing variables that can reflect the sources, transport, and retention of HMs in urban soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路老鼠发布了新的文献求助10
2秒前
shine完成签到,获得积分10
3秒前
4秒前
mmmmmmgm完成签到 ,获得积分10
5秒前
5秒前
5秒前
宗铁强完成签到,获得积分20
7秒前
8秒前
Lucas应助简单雨柏采纳,获得10
11秒前
12秒前
13秒前
13秒前
15秒前
Nian发布了新的文献求助10
16秒前
YY发布了新的文献求助10
17秒前
18秒前
王磊完成签到 ,获得积分10
21秒前
21秒前
yi只熊完成签到,获得积分20
22秒前
简单雨柏完成签到,获得积分10
23秒前
yi只熊发布了新的文献求助20
26秒前
Kylin完成签到,获得积分10
28秒前
30秒前
31秒前
31秒前
赘婿应助yi只熊采纳,获得20
34秒前
Alex应助科研通管家采纳,获得20
35秒前
gkads应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
火火发布了新的文献求助10
35秒前
Trinka完成签到,获得积分10
37秒前
JamesPei应助zhuxiaoyue采纳,获得10
38秒前
顺心的笑珊完成签到,获得积分10
41秒前
羞涩的傲菡完成签到,获得积分10
45秒前
47秒前
脑洞疼应助顺心的笑珊采纳,获得10
48秒前
52秒前
冷艳的语雪完成签到 ,获得积分10
53秒前
Amelie完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528