Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China

城市化 表土 环境科学 土壤水分 土工试验 环境化学 土壤pH值 土壤科学 环境工程 化学 生态学 生物
作者
Huan Zhang,Shihua Yin,Yihua Chen,Shuangshuang Shao,Jingtao Wu,Manman Fan,Fu‐Rong Chen,Chao Gao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:273: 122858-122858 被引量:75
标识
DOI:10.1016/j.jclepro.2020.122858
摘要

Accelerated urbanization has resulted in the accumulation of considerable amounts of heavy metals (HMs) in urban soils. It is important to identify correlations between the urbanization process and HM accumulation in the soil and predict the spatial distribution of soil HMs based on variables related to urban expansion, so that strategies for urban soil management can be created. However, accurate predictions of urban soil HMs based on predictors associated with urbanization are still lacking. In this study, 251 topsoil samples (0–20 cm) were collected using the grid-sampling method (2 km × 2 km) in a rapid urbanization area (Hefei City, China). The concentrations of As, Zn, Pb, Hg, Ni, Cu, Cr, and Cd in the soil, as well as some attributes of soil that were impacted by urbanization were determined. The areas of different land use types in a specific grid, urbanization history, and soil properties of the site were used as predictors. The overall distribution of soil HMs were then predicted using random forest (RF), artificial neural network (ANN), and support vector machine (SVM) models. The results showed that the concentrations of As, Zn, Pb, Hg, Cu, and Cd increased significantly with an increase in urbanization history. However, the highest concentrations of Ni and Cr were observed in soils between the 2nd and 3rd ring road. According to the RF model, soil CaO, OM, sulfur, phosphorus, and surrounded built-up area were identified as the most important factors for soil Zn, Pb, Cu, and Cd, indicating a predominant anthropogenic control of these HMs. The level of Hg in the soil was also likely related to human emissions because of the importance of urbanization history and the surrounded constructing area (CA) in governing the spatial distribution of Hg. The influence of Fe2O3, Al2O3, and SiO2 on soil As, Ni, and Cr indicates their primary origin from natural processes. In comparison, the SVM and RF model revealed higher R2 and lower error indices than those of the ANN model, suggesting that SVM and RF have the ability to predict urban soil HMs satisfactorily. By using independent predictors for soil HM prediction, ANN, RF, and SVM also produced significant predictions. Furthermore, the performance of the ANN, RF, SVM models were expected to be improved by introducing variables that can reflect the sources, transport, and retention of HMs in urban soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍教授发布了新的文献求助10
1秒前
1秒前
2秒前
VDC应助小宇采纳,获得30
2秒前
2秒前
2秒前
fdn发布了新的文献求助10
3秒前
4秒前
kan完成签到,获得积分10
4秒前
小马甲应助Martin采纳,获得10
4秒前
5秒前
322628完成签到,获得积分10
5秒前
王永明发布了新的文献求助10
6秒前
赵本山完成签到,获得积分20
6秒前
xue完成签到 ,获得积分10
6秒前
tuanheqi应助wyl采纳,获得50
6秒前
qin希望应助务实的易形采纳,获得10
7秒前
王耀发布了新的文献求助10
8秒前
8秒前
忧虑的羊发布了新的文献求助10
8秒前
奋斗呀发布了新的文献求助10
8秒前
FashionBoy应助冷酷的小懒猪采纳,获得10
9秒前
9秒前
huohaha发布了新的文献求助20
9秒前
赵本山发布了新的文献求助20
9秒前
Yolanda发布了新的文献求助10
10秒前
32kekediffers完成签到,获得积分10
10秒前
麋鹿发布了新的文献求助10
10秒前
112发布了新的文献求助10
11秒前
11秒前
我是老大应助jackwang采纳,获得10
12秒前
12秒前
祁乾发布了新的文献求助80
13秒前
奋斗呀完成签到,获得积分10
13秒前
zp完成签到,获得积分10
14秒前
古娜拉柔发布了新的文献求助10
14秒前
15秒前
orixero应助康超采纳,获得10
16秒前
zp发布了新的文献求助10
16秒前
VDC应助小宇采纳,获得30
17秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328727
求助须知:如何正确求助?哪些是违规求助? 2958780
关于积分的说明 8591961
捐赠科研通 2637090
什么是DOI,文献DOI怎么找? 1443351
科研通“疑难数据库(出版商)”最低求助积分说明 668684
邀请新用户注册赠送积分活动 656012