Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China

城市化 表土 环境科学 土壤水分 土工试验 环境化学 土壤pH值 土壤科学 环境工程 化学 生态学 生物
作者
Huan Zhang,Shihua Yin,Yihua Chen,Shuangshuang Shao,Jingtao Wu,Manman Fan,Fu‐Rong Chen,Chao Gao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:273: 122858-122858 被引量:75
标识
DOI:10.1016/j.jclepro.2020.122858
摘要

Accelerated urbanization has resulted in the accumulation of considerable amounts of heavy metals (HMs) in urban soils. It is important to identify correlations between the urbanization process and HM accumulation in the soil and predict the spatial distribution of soil HMs based on variables related to urban expansion, so that strategies for urban soil management can be created. However, accurate predictions of urban soil HMs based on predictors associated with urbanization are still lacking. In this study, 251 topsoil samples (0–20 cm) were collected using the grid-sampling method (2 km × 2 km) in a rapid urbanization area (Hefei City, China). The concentrations of As, Zn, Pb, Hg, Ni, Cu, Cr, and Cd in the soil, as well as some attributes of soil that were impacted by urbanization were determined. The areas of different land use types in a specific grid, urbanization history, and soil properties of the site were used as predictors. The overall distribution of soil HMs were then predicted using random forest (RF), artificial neural network (ANN), and support vector machine (SVM) models. The results showed that the concentrations of As, Zn, Pb, Hg, Cu, and Cd increased significantly with an increase in urbanization history. However, the highest concentrations of Ni and Cr were observed in soils between the 2nd and 3rd ring road. According to the RF model, soil CaO, OM, sulfur, phosphorus, and surrounded built-up area were identified as the most important factors for soil Zn, Pb, Cu, and Cd, indicating a predominant anthropogenic control of these HMs. The level of Hg in the soil was also likely related to human emissions because of the importance of urbanization history and the surrounded constructing area (CA) in governing the spatial distribution of Hg. The influence of Fe2O3, Al2O3, and SiO2 on soil As, Ni, and Cr indicates their primary origin from natural processes. In comparison, the SVM and RF model revealed higher R2 and lower error indices than those of the ANN model, suggesting that SVM and RF have the ability to predict urban soil HMs satisfactorily. By using independent predictors for soil HM prediction, ANN, RF, and SVM also produced significant predictions. Furthermore, the performance of the ANN, RF, SVM models were expected to be improved by introducing variables that can reflect the sources, transport, and retention of HMs in urban soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助是我呀小夏采纳,获得10
1秒前
1秒前
Nina完成签到,获得积分10
2秒前
ppp发布了新的文献求助10
2秒前
新司机发布了新的文献求助10
2秒前
顺心靖雁完成签到,获得积分10
5秒前
5秒前
脑洞疼应助新司机采纳,获得10
6秒前
可宝想当富婆完成签到 ,获得积分10
6秒前
coco完成签到,获得积分10
7秒前
波吉完成签到 ,获得积分10
7秒前
ly发布了新的文献求助10
9秒前
zhovy完成签到,获得积分10
9秒前
含蓄橘子完成签到,获得积分10
10秒前
ZY发布了新的文献求助10
11秒前
11秒前
啊啊啊完成签到,获得积分10
11秒前
勤恳如凡完成签到 ,获得积分10
12秒前
12秒前
12秒前
chcmuer完成签到,获得积分10
12秒前
王木木完成签到,获得积分10
12秒前
小唐完成签到,获得积分10
14秒前
14秒前
乐乐应助Blessing采纳,获得10
14秒前
15秒前
GS_lly完成签到,获得积分20
16秒前
pdf完成签到,获得积分20
17秒前
波吉发布了新的文献求助10
17秒前
SYLH应助chcmuer采纳,获得30
17秒前
ILJM发布了新的文献求助10
19秒前
新手完成签到,获得积分10
20秒前
20秒前
icanccwhite发布了新的文献求助10
22秒前
22秒前
丘比特应助种一个月亮采纳,获得10
23秒前
23秒前
n1gern发布了新的文献求助20
24秒前
24秒前
周超完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451