A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks

卷积神经网络 交叉模态 模式 模态(人机交互) 计算机科学 社会化媒体 人工智能 特征(语言学) 噪音(视频) 心理学 万维网 感知 语言学 视觉感受 社会学 哲学 神经科学 图像(数学) 社会科学
作者
Chenguang Song,Nianwen Ning,Yunlei Zhang,Bin Wu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:58 (1): 102437-102437 被引量:148
标识
DOI:10.1016/j.ipm.2020.102437
摘要

In recent years, social media has increasingly become one of the popular ways for people to consume news. As proliferation of fake news on social media has the negative impacts on individuals and society, automatic fake news detection has been explored by different research communities for combating fake news. With the development of multimedia technology, there is a phenomenon that cannot be ignored is that more and more social media news contains information with different modalities, e.g., texts, pictures and videos. The multiple information modalities show more evidence of the happening of news events and present new opportunities to detect features in fake news. First, for multimodal fake news detection task, it is a challenge of keeping the unique properties for each modality while fusing the relevant information between different modalities. Second, for some news, the information fusion between different modalities may produce the noise information which affects model’s performance. Unfortunately, existing methods fail to handle these challenges. To address these problems, we propose a multimodal fake news detection framework based on Crossmodal Attention Residual and Multichannel convolutional neural Networks (CARMN). The Crossmodal Attention Residual Network (CARN) can selectively extract the relevant information related to a target modality from another source modality while maintaining the unique information of the target modality. The Multichannel Convolutional neural Network (MCN) can mitigate the influence of noise information which may be generated by crossmodal fusion component by extracting textual feature representation from original and fused textual information simultaneously. We conduct extensive experiments on four real-world datasets and demonstrate that the proposed model outperforms the state-of-the-art methods and learns more discriminable feature representations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxx发布了新的文献求助10
1秒前
AireenBeryl531应助彭医生采纳,获得10
1秒前
1秒前
完美的火完成签到,获得积分10
2秒前
YY完成签到,获得积分10
3秒前
3秒前
3秒前
CWNU_HAN应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
CWNU_HAN应助科研通管家采纳,获得30
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
GeoEye应助科研通管家采纳,获得10
4秒前
cancanwode应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助12138的9527采纳,获得10
4秒前
完美的火发布了新的文献求助30
5秒前
华仔应助简让采纳,获得10
5秒前
机智傀斗完成签到 ,获得积分10
6秒前
你说发布了新的文献求助20
6秒前
7秒前
科研通AI2S应助寒冷的迎南采纳,获得10
7秒前
damoq发布了新的文献求助30
9秒前
9秒前
9秒前
青禾完成签到,获得积分10
9秒前
科研通AI2S应助guojingjing采纳,获得10
10秒前
我是老大应助556677y采纳,获得10
10秒前
大个应助Lin采纳,获得10
10秒前
SY发布了新的文献求助10
11秒前
万能图书馆应助柠萌采纳,获得10
11秒前
12秒前
高分求助中
Phase Relations in the System Nd-Fe-Cu 1000
FDA-2: Frenchay Dysarthria Assessment 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215199
求助须知:如何正确求助?哪些是违规求助? 2863763
关于积分的说明 8140085
捐赠科研通 2529907
什么是DOI,文献DOI怎么找? 1364204
科研通“疑难数据库(出版商)”最低求助积分说明 644074
邀请新用户注册赠送积分活动 616634