线粒体DNA
遗传学
转移RNA
生物
突变
粒线体疾病
线粒体
基因
基因型
氧化磷酸化
生物化学
核糖核酸
标识
DOI:10.3389/fcell.2020.634137
摘要
Essential hypertension (EH) is one of the most common cardiovascular diseases worldwide, entailing a high level of morbidity. EH is a multifactorial disease influenced by both genetic and environmental factors, including mitochondrial DNA (mtDNA) genotype. Previous studies identified mtDNA mutations that are associated with maternally inherited hypertension, including tRNAIle m.4263A>G, m.4291T>C, m.4295A>G, tRNAMet m.4435A>G, tRNAAla m.5655A>G, and tRNAMet/tRNAGln m.4401A>G, et al. These mtDNA mutations alter tRNA structure, thereby leading to metabolic disorders. Metabolic defects associated with mitochondrial tRNAs affect protein synthesis, cause oxidative phosphorylation defects, reduced ATP synthesis, and increase production of reactive oxygen species. In this review we discuss known mutations of tRNA genes encoded by mtDNA and the potential mechanisms by which these mutations may contribute to hypertension.
科研通智能强力驱动
Strongly Powered by AbleSci AI