Forecasting long-horizon volatility for strategic asset allocation

经济 波动性(金融) 资产配置 计量经济学 金融经济学 文件夹 资产(计算机安全) 资本资产定价模型
作者
Mirko Cardinale,Narayan Y. Naik,Varun Sharma
出处
期刊:The Journal of Portfolio Management [Pageant Media US]
卷期号:47 (4): 83-98
标识
DOI:10.3905/jpm.2021.1.212
摘要

Long-term volatility is a key forecasting input for strategic asset allocation analysis, yet most studies on volatility models have focused on short horizons. The authors use a large sample of global equity and bond indexes since 1934 to test the predictive power of different long-horizon volatility models. Their findings suggest that the best approach to forecasting long-horizon volatility is to use a long historical window and capture both long-term mean reversion and short-term volatility clustering properties. The results show that the authors’ model specification does a better job of reducing forecasting errors than does a naive model based on the simple extrapolation of historical volatility. TOPICS:Portfolio construction, volatility measures, quantitative methods, statistical methods, performance measurement Key Findings ▪ This study tests the predictive power of different long-horizon volatility models using a large sample of global equity and bond indexes since 1934. ▪ The best approach to forecasting long-horizon volatility is to use a long historical window and capture both long-term mean reversion and short-term volatility clustering properties. ▪ The results show that the proposed model specification does a better job of reducing forecasting errors than does a naive model based on the simple extrapolation of historical volatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰的疾发布了新的文献求助10
1秒前
1秒前
CodeCraft应助13采纳,获得10
2秒前
牛牛要当院士喽完成签到,获得积分10
2秒前
最牛的kangkang完成签到,获得积分10
2秒前
2秒前
victory发布了新的文献求助10
2秒前
3秒前
3秒前
冬冬完成签到,获得积分10
3秒前
wellforever发布了新的文献求助200
5秒前
pinkham_chen完成签到,获得积分10
9秒前
HUMBLE发布了新的文献求助10
9秒前
专注的语堂完成签到,获得积分10
11秒前
完美世界应助专注的语堂采纳,获得10
15秒前
17秒前
小马甲应助HUMBLE采纳,获得10
17秒前
littleJ完成签到,获得积分10
18秒前
852应助激情的一斩采纳,获得10
19秒前
19秒前
温柔的沉鱼完成签到,获得积分10
20秒前
ZhuYJ发布了新的文献求助10
22秒前
22秒前
23秒前
wangayting发布了新的文献求助30
23秒前
24秒前
25秒前
内向宛凝完成签到,获得积分20
25秒前
26秒前
善学以致用应助瓜瓜采纳,获得10
26秒前
26秒前
BAEKHYUNLUCKY完成签到,获得积分10
27秒前
28秒前
会游泳的猪完成签到,获得积分10
29秒前
ZhuYJ完成签到,获得积分10
29秒前
汎影发布了新的文献求助10
30秒前
30秒前
赫如冰发布了新的文献求助10
31秒前
bulangni完成签到,获得积分10
32秒前
内向宛凝发布了新的文献求助10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046