Current progress in the development of Fe-air batteries and their prospects for next-generation batteries

电解质 分离器(采油) 电池(电) 电极 纳米技术 储能 材料科学 化学 量子力学 热力学 物理 物理化学 功率(物理)
作者
Wai Kian Tan,Go Kawamura,Hiroyuki Muto,Atsunori Matsuda
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 59-83 被引量:7
标识
DOI:10.1016/b978-0-12-820628-7.00003-4
摘要

With the ever-growing dependency on electronic devices as well as the rapid development of electric vehicles, the demand for large-scale energy storage systems has risen significantly. Besides lithium-ion batteries, one alternative source of energy that has attracted tremendous attention is metal-air batteries as they possess high theoretical energy densities compared to other forms of batteries. Metal-air batteries employ metals such as iron, zinc, tungsten, or aluminum as the negative working electrodes and oxygen from the air as the positive working electrode. As the theoretical capacity of the metal-air batteries is determined by the negative electrodes, development is more focused on the metal electrode. Commonly, a metal-air battery in a liquid state with an alkaline aqueous solution as the electrolyte has a number of drawbacks, such as irreversibility of hydroxide ions conduction, fast capacity decay, electrode deformation, as well as hydrogen evolution during the charging process. As technology is moving toward Internet-of-Things and lightweight wearable devices, the bulkiness as well as weight of the batteries have never been more crucial. Therefore the heavier and leakage-prone liquid electrolyte-based metal-air batteries are deemed inappropriate for use as wearable devices. Therefore an alternative method to overcome both electrolyte leakage and hydrogen evolution is to utilize a solid electrolyte in an all-solid-state metal-air rechargeable battery. In this chapter, brief fundamentals of metal-air batteries focusing more on the Fe-air battery, current progress, and its future outlook will be discussed. The development of all-solid-state Fe-air batteries and their potential will also be mentioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vn完成签到,获得积分10
1秒前
1秒前
小谢发布了新的文献求助10
1秒前
小六完成签到,获得积分10
1秒前
1秒前
ATYS发布了新的文献求助10
2秒前
2秒前
111发布了新的文献求助10
2秒前
cccxxx完成签到,获得积分10
2秒前
杜不腾完成签到,获得积分10
3秒前
并不完成签到,获得积分10
3秒前
阿媛呐完成签到,获得积分10
4秒前
波粒海苔发布了新的文献求助10
5秒前
郭泓嵩完成签到,获得积分10
6秒前
lvlulu21发布了新的文献求助10
6秒前
小二郎应助聂学雨采纳,获得10
6秒前
星辰大海应助ZZZZ采纳,获得10
6秒前
6秒前
云宇发布了新的文献求助10
6秒前
7秒前
8秒前
脑洞疼应助陈怼怼采纳,获得10
9秒前
小潘完成签到,获得积分10
9秒前
开朗向真完成签到,获得积分10
10秒前
10秒前
11秒前
larrry发布了新的文献求助10
11秒前
xcc完成签到,获得积分20
12秒前
jby发布了新的文献求助10
12秒前
虚幻的香彤完成签到,获得积分10
12秒前
万能图书馆应助小谢采纳,获得10
12秒前
dungaway完成签到,获得积分10
12秒前
angelinekitty发布了新的文献求助20
13秒前
MM完成签到,获得积分10
14秒前
彭于晏应助S8采纳,获得10
14秒前
LPVV发布了新的文献求助50
14秒前
15秒前
zhuding1978完成签到,获得积分10
16秒前
扎心发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839