Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

计算机科学 分类学(生物学) 领域(数学) 人工智能 软件部署 深度学习 机器学习 数据科学 管理科学 软件工程 工程类 数学 植物 生物 纯数学
作者
Alejandro Barredo Arrieta,Natalia Díaz-Rodríguez,Javier Del Ser,Adrien Bennetot,Siham Tabik,Alberto Barbado,Salvador García,Sergio Gil-López,Daniel Molina,Richard Benjamins,Raja Chatila,Francisco Herrera
出处
期刊:Information Fusion [Elsevier BV]
卷期号:58: 82-115 被引量:5646
标识
DOI:10.1016/j.inffus.2019.12.012
摘要

In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Silole采纳,获得10
刚刚
oli完成签到,获得积分20
刚刚
杨悦完成签到,获得积分10
1秒前
2秒前
2秒前
ChristineY完成签到,获得积分10
3秒前
4秒前
mymEN完成签到 ,获得积分10
4秒前
11发布了新的文献求助10
4秒前
爆米花应助帕克采纳,获得10
4秒前
5秒前
彪壮的明轩完成签到,获得积分10
5秒前
dzjin完成签到,获得积分10
6秒前
852应助加百莉采纳,获得10
7秒前
Silole完成签到,获得积分10
7秒前
8秒前
陈奥完成签到,获得积分20
8秒前
狂野砖头发布了新的文献求助20
8秒前
称心寒松发布了新的文献求助10
8秒前
9秒前
a1313发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
知菡完成签到,获得积分10
10秒前
徐逊发布了新的文献求助10
10秒前
xiajj发布了新的文献求助10
11秒前
11秒前
Silole发布了新的文献求助10
13秒前
hczx发布了新的文献求助10
14秒前
14秒前
无限连发布了新的文献求助10
14秒前
15秒前
拼搏诗翠发布了新的文献求助10
15秒前
15秒前
aabsd发布了新的文献求助10
17秒前
luck完成签到,获得积分10
18秒前
19秒前
msy1998完成签到,获得积分10
20秒前
pangzh完成签到,获得积分10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427