An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level Ozone in the Contiguous United States

梯度升压 随机森林 Boosting(机器学习) 人工神经网络 环境科学 比例(比率) 网格 气象学 统计 地理 计算机科学 数学 机器学习 地图学 大地测量学
作者
Weeberb J. Réquia,Qian Di,Rachel Silvern,James T. Kelly,Petros Koutrakis,Loretta J. Mickley,Melissa P. Sulprizio,Heresh Amini,Liuhua Shi,Joel Schwartz
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (18): 11037-11047 被引量:144
标识
DOI:10.1021/acs.est.0c01791
摘要

In this paper, we integrated multiple types of predictor variables and three types of machine learners (neural network, random forest, and gradient boosting) into a geographically weighted ensemble model to estimate the daily maximum 8 h O3 with high resolution over both space (at 1 km × 1 km grid cells covering the contiguous United States) and time (daily estimates between 2000 and 2016). We further quantify monthly model uncertainty for our 1 km × 1 km gridded domain. The results demonstrate high overall model performance with an average cross-validated R2 (coefficient of determination) against observations of 0.90 and 0.86 for annual averages. Overall, the model performance of the three machine learning algorithms was quite similar. The overall model performance from the ensemble model outperformed those from any single algorithm. The East North Central region of the United States had the highest R2, 0.93, and performance was weakest for the western mountainous regions (R2 of 0.86) and New England (R2 of 0.87). For the cross validation by season, our model had the best performance during summer with an R2 of 0.88. This study can be useful for the environmental health community to more accurately estimate the health impacts of O3 over space and time, especially in health studies at an intra-urban scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助好滴捏采纳,获得10
刚刚
丁丁发布了新的文献求助10
刚刚
1秒前
傻呗小涛d发布了新的文献求助10
2秒前
3秒前
热心傲珊发布了新的文献求助10
4秒前
culiucabbage发布了新的文献求助10
4秒前
ppyyg完成签到,获得积分10
5秒前
5秒前
BowieHuang应助ru采纳,获得10
5秒前
纳米完成签到,获得积分10
6秒前
香蕉觅云应助林琳采纳,获得10
6秒前
不敢自称科研人完成签到,获得积分10
7秒前
7秒前
快乐寄风发布了新的文献求助10
10秒前
小二郎应助NPC采纳,获得10
10秒前
gone完成签到,获得积分10
11秒前
12秒前
害羞的振家完成签到,获得积分10
12秒前
可悲的科研狗完成签到,获得积分10
13秒前
pcm完成签到 ,获得积分10
13秒前
无花果应助王小敏敏儿采纳,获得10
13秒前
13秒前
所所应助看文献的韩章浅采纳,获得10
14秒前
15秒前
16秒前
nana发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
FashionBoy应助sff采纳,获得10
20秒前
21秒前
22秒前
Qiao发布了新的文献求助10
22秒前
蓝橙完成签到,获得积分10
23秒前
CodeCraft应助qq158014169采纳,获得10
23秒前
小化发布了新的文献求助10
24秒前
领导范儿应助灿灿采纳,获得30
25秒前
Mic应助ning采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487