Adaptive Fusion of Heterogeneous Manifolds for Subspace Clustering

聚类分析 计算机科学 加权 高维数据聚类 代表(政治) 歧管(流体力学) 保险丝(电气) 秩(图论) 人工智能 数据挖掘 模式识别(心理学) 数学 工程类 放射科 电气工程 组合数学 政治 机械工程 法学 医学 政治学
作者
Boyue Wang,Yongli Hu,Junbin Gao,Yanfeng Sun,Fujiao Ju,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 3484-3497 被引量:9
标识
DOI:10.1109/tnnls.2020.3011717
摘要

Multiview clustering (MVC) has recently received great interest due to its pleasing efficacy in combining the abundant and complementary information to improve clustering performance, which overcomes the drawbacks of view limitation existed in the standard single-view clustering. However, the existing MVC methods are mostly designed for vectorial data from linear spaces and, thus, are not suitable for multiple dimensional data with intrinsic nonlinear manifold structures, e.g., videos or image sets. Some works have introduced manifolds' representation methods of data into MVC and obtained considerable improvements, but how to fuse multiple manifolds efficiently for clustering is still a challenging problem. Particularly, for heterogeneous manifolds, it is an entirely new problem. In this article, we propose to represent the complicated multiviews' data as heterogeneous manifolds and a fusion framework of heterogeneous manifolds for clustering. Different from the empirical weighting methods, an adaptive fusion strategy is designed to weight the importance of different manifolds in a data-driven manner. In addition, the low-rank representation is generalized onto the fused heterogeneous manifolds to explore the low-dimensional subspace structures embedded in data for clustering. We assessed the proposed method on several public data sets, including human action video, facial image, and traffic scenario video. The experimental results show that our method obviously outperforms a number of state-of-the-art clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
白六六发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助风犬少年采纳,获得10
4秒前
Young应助zhuzhu采纳,获得10
5秒前
6秒前
浮游应助zyz采纳,获得20
8秒前
9秒前
PsyQin完成签到,获得积分10
10秒前
777发布了新的文献求助10
10秒前
赘婿应助ChangZhenglee采纳,获得10
11秒前
包凡之发布了新的文献求助10
12秒前
leopold完成签到,获得积分10
13秒前
云ssss完成签到,获得积分10
13秒前
13秒前
14秒前
wxj发布了新的文献求助10
14秒前
小蘑菇应助活泼的觅云采纳,获得10
14秒前
淡定小小完成签到,获得积分10
15秒前
jy完成签到,获得积分10
15秒前
Ico发布了新的文献求助20
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
小怪完成签到,获得积分10
16秒前
Alaska关注了科研通微信公众号
17秒前
齐天完成签到 ,获得积分10
18秒前
Zhr完成签到 ,获得积分10
18秒前
19秒前
19秒前
酷炫的安青完成签到 ,获得积分20
19秒前
19秒前
今后应助777采纳,获得10
20秒前
拾一发布了新的文献求助10
21秒前
斯人如机发布了新的文献求助10
21秒前
24秒前
czz发布了新的文献求助10
25秒前
夕子爱科研完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075786
求助须知:如何正确求助?哪些是违规求助? 4295478
关于积分的说明 13384730
捐赠科研通 4117273
什么是DOI,文献DOI怎么找? 2254776
邀请新用户注册赠送积分活动 1259379
关于科研通互助平台的介绍 1192141