Adaptive Fusion of Heterogeneous Manifolds for Subspace Clustering

聚类分析 计算机科学 加权 高维数据聚类 代表(政治) 歧管(流体力学) 保险丝(电气) 秩(图论) 人工智能 数据挖掘 模式识别(心理学) 数学 工程类 放射科 电气工程 组合数学 政治 机械工程 法学 医学 政治学
作者
Boyue Wang,Yongli Hu,Junbin Gao,Yanfeng Sun,Fujiao Ju,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 3484-3497 被引量:9
标识
DOI:10.1109/tnnls.2020.3011717
摘要

Multiview clustering (MVC) has recently received great interest due to its pleasing efficacy in combining the abundant and complementary information to improve clustering performance, which overcomes the drawbacks of view limitation existed in the standard single-view clustering. However, the existing MVC methods are mostly designed for vectorial data from linear spaces and, thus, are not suitable for multiple dimensional data with intrinsic nonlinear manifold structures, e.g., videos or image sets. Some works have introduced manifolds' representation methods of data into MVC and obtained considerable improvements, but how to fuse multiple manifolds efficiently for clustering is still a challenging problem. Particularly, for heterogeneous manifolds, it is an entirely new problem. In this article, we propose to represent the complicated multiviews' data as heterogeneous manifolds and a fusion framework of heterogeneous manifolds for clustering. Different from the empirical weighting methods, an adaptive fusion strategy is designed to weight the importance of different manifolds in a data-driven manner. In addition, the low-rank representation is generalized onto the fused heterogeneous manifolds to explore the low-dimensional subspace structures embedded in data for clustering. We assessed the proposed method on several public data sets, including human action video, facial image, and traffic scenario video. The experimental results show that our method obviously outperforms a number of state-of-the-art clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
机灵的双双完成签到,获得积分10
2秒前
3秒前
sunshine完成签到,获得积分10
3秒前
科研通AI6应助zyin采纳,获得10
3秒前
葛启峰完成签到,获得积分10
4秒前
镓氧锌钇铀应助有钱采纳,获得10
4秒前
5秒前
luo发布了新的文献求助10
5秒前
深情安青应助阔达乘云采纳,获得10
6秒前
研友_VZG7GZ应助123采纳,获得10
7秒前
7秒前
善学以致用应助neuarcher采纳,获得10
7秒前
ccm发布了新的文献求助10
7秒前
一叶知秋应助凡松采纳,获得20
7秒前
8秒前
8秒前
娜扎完成签到,获得积分10
8秒前
8秒前
qaplay完成签到 ,获得积分0
8秒前
妮多完成签到,获得积分10
9秒前
10秒前
蓝冰发布了新的文献求助10
11秒前
坚强打工人完成签到,获得积分10
11秒前
xinyuwang完成签到,获得积分10
12秒前
12秒前
Orange应助neuarcher采纳,获得10
13秒前
320me666完成签到 ,获得积分10
13秒前
hh发布了新的文献求助10
13秒前
14秒前
123完成签到,获得积分10
14秒前
siyuwang1234完成签到,获得积分10
14秒前
15秒前
shixiangsun发布了新的文献求助10
15秒前
王楠楠发布了新的文献求助10
16秒前
16秒前
16秒前
阔达乘云完成签到,获得积分10
17秒前
科研通AI6应助张文博采纳,获得10
17秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114