Adaptive Fusion of Heterogeneous Manifolds for Subspace Clustering

聚类分析 计算机科学 加权 高维数据聚类 代表(政治) 歧管(流体力学) 保险丝(电气) 秩(图论) 人工智能 数据挖掘 模式识别(心理学) 数学 工程类 放射科 电气工程 组合数学 政治 机械工程 法学 医学 政治学
作者
Boyue Wang,Yongli Hu,Junbin Gao,Yanfeng Sun,Fujiao Ju,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 3484-3497 被引量:9
标识
DOI:10.1109/tnnls.2020.3011717
摘要

Multiview clustering (MVC) has recently received great interest due to its pleasing efficacy in combining the abundant and complementary information to improve clustering performance, which overcomes the drawbacks of view limitation existed in the standard single-view clustering. However, the existing MVC methods are mostly designed for vectorial data from linear spaces and, thus, are not suitable for multiple dimensional data with intrinsic nonlinear manifold structures, e.g., videos or image sets. Some works have introduced manifolds' representation methods of data into MVC and obtained considerable improvements, but how to fuse multiple manifolds efficiently for clustering is still a challenging problem. Particularly, for heterogeneous manifolds, it is an entirely new problem. In this article, we propose to represent the complicated multiviews' data as heterogeneous manifolds and a fusion framework of heterogeneous manifolds for clustering. Different from the empirical weighting methods, an adaptive fusion strategy is designed to weight the importance of different manifolds in a data-driven manner. In addition, the low-rank representation is generalized onto the fused heterogeneous manifolds to explore the low-dimensional subspace structures embedded in data for clustering. We assessed the proposed method on several public data sets, including human action video, facial image, and traffic scenario video. The experimental results show that our method obviously outperforms a number of state-of-the-art clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助淡定紫菱采纳,获得10
刚刚
逆流的鱼完成签到 ,获得积分10
1秒前
1秒前
liuqian完成签到,获得积分10
2秒前
Hou完成签到 ,获得积分10
2秒前
反杀闰土的猹完成签到 ,获得积分20
2秒前
所所应助cc采纳,获得10
3秒前
邵裘完成签到,获得积分10
3秒前
丘比特应助yin采纳,获得10
3秒前
4秒前
4秒前
4秒前
希望天下0贩的0应助sss采纳,获得20
4秒前
拼搏向前发布了新的文献求助10
4秒前
紫罗兰花海完成签到 ,获得积分10
5秒前
琪琪完成签到,获得积分10
6秒前
6秒前
爆米花应助高兴藏花采纳,获得10
6秒前
orixero应助Rrr采纳,获得10
6秒前
7秒前
张今天也要做科研呀完成签到,获得积分10
7秒前
humorlife完成签到,获得积分10
7秒前
打打应助给我找采纳,获得10
8秒前
酷波er应助谦让的含海采纳,获得10
8秒前
8秒前
shrike发布了新的文献求助10
8秒前
心灵美半邪完成签到 ,获得积分10
10秒前
wanci应助星晴遇见花海采纳,获得10
10秒前
10秒前
MILL完成签到,获得积分20
10秒前
卡卡发布了新的文献求助10
10秒前
今后应助九城采纳,获得10
11秒前
11秒前
我是125应助凶狠的乐巧采纳,获得10
11秒前
11秒前
开心的火龙果完成签到,获得积分10
12秒前
科研通AI2S应助长夜变清早采纳,获得10
12秒前
su发布了新的文献求助10
12秒前
明理的访风完成签到,获得积分10
12秒前
小马哥完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794