Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer

医学 列线图 无线电技术 接收机工作特性 置信区间 阶段(地层学) 逻辑回归 队列 放射科 核医学 肿瘤科 内科学 生物 古生物学
作者
Xiaoxiao Wang,Yi Ding,Siwen Wang,Di Dong,Hailin Li,Jian Chen,Hui Hu,Chao Lü,Jie Tian,Xiuhong Shan
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:20 (1) 被引量:39
标识
DOI:10.1186/s40644-020-00358-3
摘要

Abstract Background Preoperative prediction of the Lauren classification in gastric cancer (GC) is very important to the choice of therapy, the evaluation of prognosis, and the improvement of quality of life. However, there is not yet radiomics analysis concerning the prediction of Lauren classification straightly. In this study, a radiomic nomogram was developed to preoperatively differentiate Lauren diffuse type from intestinal type in GC. Methods A total of 539 GC patients were enrolled in this study and later randomly allocated to two cohorts at a 7:3 ratio for training and validation. Two sets of radiomic features were derived from tumor regions and peritumor regions on venous phase computed tomography (CT) images, respectively. With the least absolute shrinkage and selection operator logistic regression, a combined radiomic signature was constructed. Also, a tumor-based model and a peripheral ring-based model were built for comparison. Afterwards, a radiomic nomogram integrating the combined radiomic signature and clinical characteristics was developed. All the models were evaluated regarding classification ability and clinical usefulness. Results The combined radiomic signature achieved an area under receiver operating characteristic curve (AUC) of 0.715 (95% confidence interval [CI], 0.663–0.767) in the training cohort and 0.714 (95% CI, 0.636–0.792) in the validation cohort. The radiomic nomogram incorporating the combined radiomic signature, age, CT T stage, and CT N stage outperformed the other models with a training AUC of 0.745 (95% CI, 0.696–0.795) and a validation AUC of 0.758 (95% CI, 0.685–0.831). The significantly improved sensitivity of radiomic nomogram (0.765 and 0.793) indicated better identification of diffuse type GC patients. Further, calibration curves and decision curves demonstrated its great model fitness and clinical usefulness. Conclusions The radiomic nomogram involving the combined radiomic signature and clinical characteristics holds potential in differentiating Lauren diffuse type from intestinal type for reasonable clinical treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松不二完成签到,获得积分10
刚刚
苏苏发布了新的文献求助10
刚刚
CC完成签到,获得积分10
刚刚
wanci应助Fareth采纳,获得10
2秒前
2秒前
风之晨曦完成签到,获得积分10
2秒前
nan发布了新的文献求助10
2秒前
轻松不二发布了新的文献求助10
3秒前
4秒前
4秒前
美满的稚晴完成签到 ,获得积分10
4秒前
5秒前
慕青应助AnnChen采纳,获得10
5秒前
回眸是明眸完成签到,获得积分10
5秒前
5秒前
5秒前
高高的冷之完成签到,获得积分10
6秒前
6秒前
Chosen_1完成签到,获得积分10
6秒前
7秒前
酷波er应助Jughead采纳,获得10
7秒前
7秒前
小王姐姐完成签到,获得积分10
7秒前
8秒前
popdragon发布了新的文献求助10
8秒前
yu发布了新的文献求助10
9秒前
shhoing应助秘书处堂采纳,获得20
9秒前
9秒前
eco发布了新的文献求助10
10秒前
enoki完成签到,获得积分10
10秒前
10秒前
搁浅发布了新的文献求助10
10秒前
pengzh发布了新的文献求助10
10秒前
狂野萤发布了新的文献求助10
10秒前
xiyang完成签到 ,获得积分10
10秒前
11秒前
喵公进货完成签到,获得积分20
11秒前
周宇飞发布了新的文献求助10
11秒前
科研通AI5应助乂氼采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562