Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer

医学 列线图 无线电技术 接收机工作特性 置信区间 阶段(地层学) 逻辑回归 队列 放射科 核医学 肿瘤科 内科学 生物 古生物学
作者
Xiaoxiao Wang,Yi Ding,Siwen Wang,Di Dong,Hailin Li,Jian Chen,Hui Hu,Chao Lü,Jie Tian,Xiuhong Shan
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:20 (1) 被引量:39
标识
DOI:10.1186/s40644-020-00358-3
摘要

Abstract Background Preoperative prediction of the Lauren classification in gastric cancer (GC) is very important to the choice of therapy, the evaluation of prognosis, and the improvement of quality of life. However, there is not yet radiomics analysis concerning the prediction of Lauren classification straightly. In this study, a radiomic nomogram was developed to preoperatively differentiate Lauren diffuse type from intestinal type in GC. Methods A total of 539 GC patients were enrolled in this study and later randomly allocated to two cohorts at a 7:3 ratio for training and validation. Two sets of radiomic features were derived from tumor regions and peritumor regions on venous phase computed tomography (CT) images, respectively. With the least absolute shrinkage and selection operator logistic regression, a combined radiomic signature was constructed. Also, a tumor-based model and a peripheral ring-based model were built for comparison. Afterwards, a radiomic nomogram integrating the combined radiomic signature and clinical characteristics was developed. All the models were evaluated regarding classification ability and clinical usefulness. Results The combined radiomic signature achieved an area under receiver operating characteristic curve (AUC) of 0.715 (95% confidence interval [CI], 0.663–0.767) in the training cohort and 0.714 (95% CI, 0.636–0.792) in the validation cohort. The radiomic nomogram incorporating the combined radiomic signature, age, CT T stage, and CT N stage outperformed the other models with a training AUC of 0.745 (95% CI, 0.696–0.795) and a validation AUC of 0.758 (95% CI, 0.685–0.831). The significantly improved sensitivity of radiomic nomogram (0.765 and 0.793) indicated better identification of diffuse type GC patients. Further, calibration curves and decision curves demonstrated its great model fitness and clinical usefulness. Conclusions The radiomic nomogram involving the combined radiomic signature and clinical characteristics holds potential in differentiating Lauren diffuse type from intestinal type for reasonable clinical treatment strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达西苏应助科研通管家采纳,获得20
2秒前
达西苏应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
虞无声应助科研通管家采纳,获得10
2秒前
嗨害害完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
wwwwwl完成签到 ,获得积分10
7秒前
Garfield完成签到 ,获得积分10
13秒前
左丘映易完成签到,获得积分0
14秒前
动人的诗霜完成签到 ,获得积分10
14秒前
涛1完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
26秒前
30秒前
吱吱发布了新的文献求助10
35秒前
冷艳的又蓝完成签到 ,获得积分10
37秒前
wxh完成签到 ,获得积分10
37秒前
Iwbhfe完成签到 ,获得积分10
41秒前
loren313完成签到,获得积分0
42秒前
量子星尘发布了新的文献求助10
49秒前
Imran完成签到,获得积分10
55秒前
左鞅完成签到 ,获得积分10
59秒前
温馨完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
cwanglh完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
WL完成签到 ,获得积分10
1分钟前
小果完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
1分钟前
叶千山完成签到 ,获得积分10
1分钟前
耍酷鼠标完成签到 ,获得积分0
1分钟前
聪明的二休完成签到,获得积分20
1分钟前
Young完成签到 ,获得积分10
1分钟前
WL关注了科研通微信公众号
1分钟前
曾经小伙完成签到 ,获得积分10
1分钟前
乐乐应助聪明的二休采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李栖迟完成签到 ,获得积分10
1分钟前
鲁滨逊完成签到 ,获得积分10
1分钟前
满意的伊完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584814
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771608
捐赠科研通 4615290
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467561