A Real-time Driving Drowsiness Detection Algorithm With Individual Differences Consideration

计算机科学 卷积神经网络 分类器(UML) 支持向量机 特征提取 人工智能 帧速率 帧(网络) 计算机视觉 驾驶模拟器 模式识别(心理学)
作者
Feng You,Xiaolong Li,Yunbo Gong,Hailwei Wang,Hongyi Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 179396-179408 被引量:12
标识
DOI:10.1109/access.2019.2958667
摘要

The research work about driving drowsiness detection algorithm has great significance to improve traffic safety. Presently, there are many fruits and literature about driving drowsiness detection method. However, most of them are devoted to find a universal drowsiness detection method, while ignore the individual driver differences. This paper proposes a real-time driving drowsiness detection algorithm that considers the individual differences of driver. A deep cascaded convolutional neural network was constructed to detect the face region, which avoids the problem of poor accuracy caused by artificial feature extraction. Based on the Dlib toolkit, the landmarks of frontal driver facial in a frame are found. According to the eyes landmarks, a new parameter, called Eyes Aspect Ratio, is introduced to evaluate the drowsiness of driver in the current frame. Taking into account differences in size of driver's eyes, the proposed algorithm consists of two modules: offline training and online monitoring. In the first module, a unique fatigue state classifier, based on Support Vector Machines, was trained which taking the Eyes Aspect Ratio as input. Then, in the second module, the trained classifier is application to monitor the state of driver online. Because the fatigue driving state is gradually produced, a variable which calculated by number of drowsy frames per unit time is introduced to assess the drowsiness of driver. Through comparative experiments, we demonstrate this algorithm outperforms current driving drowsiness detection approaches in both accuracy and speed. In simulated driving applications, the proposed algorithm detects the drowsy state of driver quickly from 640 * 480 resolution images at over 20fps and 94.80% accuracy. The research result can serve intelligent transportation system, ensure driver safety and reduce the losses caused by drowsy driving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鱼缸发布了新的文献求助10
2秒前
吃饭必加葱完成签到 ,获得积分10
3秒前
牙牙完成签到,获得积分10
3秒前
3秒前
CodeCraft应助xu采纳,获得10
3秒前
Eden发布了新的文献求助10
3秒前
科目三应助陈奥采纳,获得10
4秒前
xiaoE发布了新的文献求助10
4秒前
filory发布了新的文献求助10
4秒前
yy应助中央戏精学院采纳,获得10
5秒前
深情安青应助难过太君采纳,获得10
5秒前
5秒前
文章刻骨几人知完成签到,获得积分10
5秒前
jiahu发布了新的文献求助10
6秒前
D515发布了新的文献求助50
6秒前
WYP驳回了pluto应助
6秒前
6秒前
吉吉完成签到,获得积分10
7秒前
7秒前
任性蓉完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
婳嬨发布了新的文献求助10
10秒前
liugm发布了新的文献求助10
11秒前
御风发布了新的文献求助10
12秒前
吉吉发布了新的文献求助10
13秒前
Akim应助启航采纳,获得10
16秒前
明德zhuang发布了新的文献求助30
16秒前
乌眠完成签到,获得积分10
16秒前
脑洞疼应助xiaoE采纳,获得10
16秒前
16秒前
liugm完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427