Classification of tweets data based on polarity using improved RBF kernel of SVM

人工智能 模式识别(心理学) 核(代数) 机器学习 分类器(UML) 极性(国际关系) 人工神经网络 特征(语言学) 特征提取 特征向量 数据挖掘
作者
Arepalli Peda Gopi,R. Naga Sravana Jyothi,V. Lakshman Narayana,K. Satya Sandeep
出处
期刊:International Journal of Information Technology 卷期号:: 1-16 被引量:28
标识
DOI:10.1007/s41870-019-00409-4
摘要

The sentiment analysis has gained its importance in recent years. People had improved their way of expressing their opinions about products, services, celebrities, and current topics in internet portals, blogs and social networks. The social network websites like Face book, Twitter, WhatsApp, LinkedIn and Hike messenger, providing the users to express their feelings by using the different symbols like smiley’s, funny faces, etc., These social media websites provide a platform to display peoples’ opinions on topics like movies, products, fashion trends, politics, technologies were expressed. The E-Commerce portals like Amazon, Flip Kart, Snap deal etc., help the people to express their opinions on products. A framework is proposed in this work to find the scores of the opinions and derive conclusions. The classification of opinions is called opinion mining, whereas deriving the scores for those opinions are called sentiment analysis. Here the Classification techniques are used for opinion mining and the scores to those opinions are given by taking a scale from –5 to +5.In this work, a movie review data set has been collected from the twitter reviews (http://ai.stanford.edu/~amaas/data/sentiment/) between the years 2003 and 2012. The Word net lexicon dictionary is used to compare the emotions for obtaining the score. In this paper, the proposed improved RBF kernel of SVM-performed with 98.8% of accuracy when compared with the existing SVM-RBF classifier and other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
柒_发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
syrrr要发文章完成签到 ,获得积分10
4秒前
5秒前
树枝完成签到,获得积分10
5秒前
8秒前
毕之发布了新的文献求助10
8秒前
可可完成签到,获得积分10
9秒前
9秒前
9秒前
干羞花完成签到,获得积分10
10秒前
11秒前
11秒前
CipherSage应助冷酷的河马采纳,获得10
12秒前
12秒前
fcyyc发布了新的文献求助10
14秒前
Orange应助胡大嘴先生采纳,获得10
14秒前
welkin发布了新的文献求助10
16秒前
共享精神应助温暖白开水采纳,获得10
17秒前
所所应助小羊咩咩咩采纳,获得10
17秒前
18秒前
snail完成签到,获得积分10
18秒前
18秒前
海岛发布了新的文献求助10
18秒前
21秒前
21秒前
111发布了新的文献求助10
21秒前
嗑学家发布了新的文献求助10
22秒前
CodeCraft应助AlexanderNEIL采纳,获得10
23秒前
23秒前
24秒前
小海完成签到 ,获得积分10
25秒前
25秒前
小羊咩咩咩完成签到,获得积分10
25秒前
25秒前
怕孤单的幼荷完成签到 ,获得积分10
26秒前
加油发布了新的文献求助10
26秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683401
求助须知:如何正确求助?哪些是违规求助? 3234781
关于积分的说明 9816484
捐赠科研通 2946381
什么是DOI,文献DOI怎么找? 1615550
邀请新用户注册赠送积分活动 763027
科研通“疑难数据库(出版商)”最低求助积分说明 737643