Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study

医学 内科学 心脏病学 无症状的 心肌梗塞 危险系数 前瞻性队列研究 冠状动脉钙评分 冠状动脉钙 冠状动脉疾病 置信区间
作者
Frédéric Commandeur,Piotr Slomka,Markus Goeller,Xi Chen,Sebastien Cadet,Aryabod Razipour,Priscilla McElhinney,Heidi Gransar,Stephanie Cantu,Robert J.H. Miller,Alan Rozanski,Stephan Achenbach,Balaji Tamarappoo,Daniel S. Berman,Damini Dey
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:116 (14): 2216-2225 被引量:88
标识
DOI:10.1093/cvr/cvz321
摘要

Abstract Aims Our aim was to evaluate the performance of machine learning (ML), integrating clinical parameters with coronary artery calcium (CAC), and automated epicardial adipose tissue (EAT) quantification, for the prediction of long-term risk of myocardial infarction (MI) and cardiac death in asymptomatic subjects. Methods and results Our study included 1912 asymptomatic subjects [1117 (58.4%) male, age: 55.8 ± 9.1 years] from the prospective EISNER trial with long-term follow-up after CAC scoring. EAT volume and density were quantified using a fully automated deep learning method. ML extreme gradient boosting was trained using clinical co-variates, plasma lipid panel measurements, risk factors, CAC, aortic calcium, and automated EAT measures, and validated using repeated 10-fold cross validation. During mean follow-up of 14.5 ± 2 years, 76 events of MI and/or cardiac death occurred. ML obtained a significantly higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77, P < 0.05 for all). Subjects with a higher ML score (by Youden’s index) had high hazard of suffering events (HR: 10.38, P < 0.001); the relationships persisted in multivariable analysis including ASCVD-risk and CAC measures (HR: 2.94, P = 0.005). Age, ASCVD-risk, and CAC were prognostically important for both genders. Systolic blood pressure was more important than cholesterol in women, and the opposite in men. Conclusions In this prospective study, machine learning used to integrate clinical and quantitative imaging-based variables significantly improves prediction of MI and cardiac death compared with standard clinical risk assessment. Following further validation, such a personalized paradigm could potentially be used to improve cardiovascular risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助苦行僧采纳,获得10
刚刚
默默的甜瓜完成签到,获得积分10
刚刚
grisco发布了新的文献求助10
2秒前
落寞的无施完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
Lucia完成签到,获得积分10
5秒前
希望天下0贩的0应助文儿采纳,获得10
6秒前
彩虹发布了新的文献求助10
7秒前
10秒前
10秒前
完美世界应助123~!采纳,获得30
11秒前
夏青荷发布了新的文献求助10
12秒前
evelyn完成签到 ,获得积分10
13秒前
时冬冬应助双木夕采纳,获得10
14秒前
Anoxra完成签到,获得积分20
14秒前
16秒前
彩虹完成签到,获得积分10
17秒前
17秒前
韭菜发布了新的文献求助10
18秒前
19秒前
Anoxra发布了新的文献求助10
19秒前
20秒前
深情安青应助枝桠采纳,获得10
21秒前
勤恳的磬发布了新的文献求助10
22秒前
lpt完成签到 ,获得积分10
22秒前
加力发布了新的文献求助10
24秒前
25秒前
不配.应助韭菜采纳,获得10
26秒前
大个应助韭菜采纳,获得10
26秒前
yueLu完成签到 ,获得积分10
26秒前
29秒前
abc发布了新的文献求助10
30秒前
慕青应助木子采纳,获得10
30秒前
31秒前
32秒前
善良的冷梅完成签到,获得积分10
33秒前
不配.应助洪皓然采纳,获得10
33秒前
惊蛰完成签到 ,获得积分20
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870