Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study

医学 内科学 心脏病学 无症状的 心肌梗塞 危险系数 前瞻性队列研究 冠状动脉钙评分 冠状动脉钙 冠状动脉疾病 置信区间
作者
Frédéric Commandeur,Piotr Slomka,Markus Goeller,Xi Chen,Sebastien Cadet,Aryabod Razipour,Priscilla McElhinney,Heidi Gransar,Stephanie Cantu,Robert J.H. Miller,Alan Rozanski,Stephan Achenbach,Balaji Tamarappoo,Daniel S. Berman,Damini Dey
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:116 (14): 2216-2225 被引量:88
标识
DOI:10.1093/cvr/cvz321
摘要

Abstract Aims Our aim was to evaluate the performance of machine learning (ML), integrating clinical parameters with coronary artery calcium (CAC), and automated epicardial adipose tissue (EAT) quantification, for the prediction of long-term risk of myocardial infarction (MI) and cardiac death in asymptomatic subjects. Methods and results Our study included 1912 asymptomatic subjects [1117 (58.4%) male, age: 55.8 ± 9.1 years] from the prospective EISNER trial with long-term follow-up after CAC scoring. EAT volume and density were quantified using a fully automated deep learning method. ML extreme gradient boosting was trained using clinical co-variates, plasma lipid panel measurements, risk factors, CAC, aortic calcium, and automated EAT measures, and validated using repeated 10-fold cross validation. During mean follow-up of 14.5 ± 2 years, 76 events of MI and/or cardiac death occurred. ML obtained a significantly higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77, P < 0.05 for all). Subjects with a higher ML score (by Youden’s index) had high hazard of suffering events (HR: 10.38, P < 0.001); the relationships persisted in multivariable analysis including ASCVD-risk and CAC measures (HR: 2.94, P = 0.005). Age, ASCVD-risk, and CAC were prognostically important for both genders. Systolic blood pressure was more important than cholesterol in women, and the opposite in men. Conclusions In this prospective study, machine learning used to integrate clinical and quantitative imaging-based variables significantly improves prediction of MI and cardiac death compared with standard clinical risk assessment. Following further validation, such a personalized paradigm could potentially be used to improve cardiovascular risk assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www发布了新的文献求助10
刚刚
1秒前
活力天蓝发布了新的文献求助10
1秒前
深情安青应助无心的闭月采纳,获得10
2秒前
2秒前
2秒前
3秒前
华雍发布了新的文献求助10
3秒前
淡定的竺发布了新的文献求助30
3秒前
4秒前
xd发布了新的文献求助10
4秒前
华仔应助小章采纳,获得10
4秒前
4秒前
5秒前
爆米花应助马儿咯咯哒采纳,获得10
6秒前
尖叫尖叫发布了新的文献求助20
6秒前
柴郡喵完成签到,获得积分10
7秒前
7秒前
跳跃毒娘发布了新的文献求助10
7秒前
菜小芽完成签到 ,获得积分10
7秒前
华雍完成签到,获得积分10
8秒前
lincool完成签到,获得积分10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
ZR14124发布了新的文献求助10
12秒前
MAKEYF完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助30
12秒前
上官若男应助Yuanyuan采纳,获得10
14秒前
dnn_发布了新的文献求助10
14秒前
自然若完成签到,获得积分10
14秒前
16秒前
wkktx发布了新的文献求助10
16秒前
优美紫槐发布了新的文献求助10
17秒前
周新运完成签到,获得积分10
17秒前
18秒前
阿奶完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535