Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study

医学 内科学 心脏病学 无症状的 心肌梗塞 危险系数 前瞻性队列研究 冠状动脉钙评分 冠状动脉钙 冠状动脉疾病 置信区间
作者
Frédéric Commandeur,Piotr Slomka,Markus Goeller,Xi Chen,Sebastien Cadet,Aryabod Razipour,Priscilla McElhinney,Heidi Gransar,Stephanie Cantu,Robert J.H. Miller,Alan Rozanski,Stephan Achenbach,Balaji Tamarappoo,Daniel S. Berman,Damini Dey
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:116 (14): 2216-2225 被引量:88
标识
DOI:10.1093/cvr/cvz321
摘要

Abstract Aims Our aim was to evaluate the performance of machine learning (ML), integrating clinical parameters with coronary artery calcium (CAC), and automated epicardial adipose tissue (EAT) quantification, for the prediction of long-term risk of myocardial infarction (MI) and cardiac death in asymptomatic subjects. Methods and results Our study included 1912 asymptomatic subjects [1117 (58.4%) male, age: 55.8 ± 9.1 years] from the prospective EISNER trial with long-term follow-up after CAC scoring. EAT volume and density were quantified using a fully automated deep learning method. ML extreme gradient boosting was trained using clinical co-variates, plasma lipid panel measurements, risk factors, CAC, aortic calcium, and automated EAT measures, and validated using repeated 10-fold cross validation. During mean follow-up of 14.5 ± 2 years, 76 events of MI and/or cardiac death occurred. ML obtained a significantly higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77, P < 0.05 for all). Subjects with a higher ML score (by Youden’s index) had high hazard of suffering events (HR: 10.38, P < 0.001); the relationships persisted in multivariable analysis including ASCVD-risk and CAC measures (HR: 2.94, P = 0.005). Age, ASCVD-risk, and CAC were prognostically important for both genders. Systolic blood pressure was more important than cholesterol in women, and the opposite in men. Conclusions In this prospective study, machine learning used to integrate clinical and quantitative imaging-based variables significantly improves prediction of MI and cardiac death compared with standard clinical risk assessment. Following further validation, such a personalized paradigm could potentially be used to improve cardiovascular risk assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasa发布了新的文献求助10
1秒前
甜甜静槐发布了新的文献求助10
1秒前
Dxy-TOFA完成签到,获得积分10
2秒前
2秒前
4秒前
GaoChenxi发布了新的文献求助10
5秒前
Zzz呀完成签到 ,获得积分10
6秒前
沉默诗兰完成签到,获得积分10
6秒前
9秒前
Wqian发布了新的文献求助10
12秒前
19秒前
浮游应助单薄的寻桃采纳,获得10
20秒前
23秒前
Jodie发布了新的文献求助10
25秒前
25秒前
科研通AI6应助nmeiko采纳,获得10
25秒前
26秒前
qxm完成签到 ,获得积分10
28秒前
29秒前
Quanta完成签到,获得积分10
30秒前
渔婆发布了新的文献求助10
31秒前
laruijoint完成签到,获得积分10
31秒前
淘气乌龙茶完成签到 ,获得积分10
32秒前
鹏程完成签到,获得积分10
34秒前
丘比特应助呆妞采纳,获得10
37秒前
38秒前
蔡克东发布了新的文献求助10
38秒前
LL完成签到 ,获得积分10
43秒前
小泡芙完成签到,获得积分10
44秒前
朱梦琳朱梦琳完成签到,获得积分10
45秒前
45秒前
45秒前
古藤完成签到 ,获得积分10
46秒前
50秒前
在水一方应助伯言采纳,获得10
50秒前
吴咪发布了新的文献求助10
50秒前
呆妞发布了新的文献求助10
51秒前
浮游应助Quanta采纳,获得10
52秒前
科目三应助少年游采纳,获得10
56秒前
吴咪完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555