S2CFT: A New Approach for Paper Submission Recommendation

计算机科学 卷积神经网络 情报检索 人工智能 嵌入 数据挖掘 模式识别(心理学)
作者
Dac H. Nguyen,Son T. Huynh,Nguyen Phong Thu Huynh,Cuong V. Dinh,Binh T. Nguyen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 563-573 被引量:6
标识
DOI:10.1007/978-3-030-67731-2_41
摘要

There have been a massive number of conferences and journals in computer science that create a lot of difficulties for scientists, especially for early-stage researchers, to find the most suitable venue for their scientific submission. In this paper, we present a novel approach for building a paper submission recommendation system by using two different types of embedding methods, GloVe and FastText, as well as Convolutional Neural Network (CNN) and LSTM to extract useful features for a paper submission recommendation model. We consider seven combinations of initial attributes from a given submission: title, abstract, keywords, title + keyword, title + abstract, keyword + abstract, and title + keyword + abstract. We measure these approaches' performance on one dataset, presented by Wang et al., in terms of top K accuracy and compare our methods with the S2RSCS model, the state-of-the-art algorithm on this dataset. The experimental results show that CNN + FastText can outperform other approaches (CNN + GloVe, LSTM + GloVe, LSTM + FastText, S2RSCS) in term of top 1 accuracy for seven types of input data. Without using a list of keywords in the input data, CNN + GloVe/FastText can surpass other techniques. It has a bit lower performance than S2RSCS in terms of the top 3 and top 5 accuracies when using the keyword information. Finally, the combination of S2RSCS and CNN + FastText, namely S2CFT, can create a better model that bypasses all other methods by top K accuracy (K = 1,3,5,10).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助10
刚刚
852应助耍酷问兰采纳,获得10
1秒前
自信雅琴完成签到,获得积分10
1秒前
杨123发布了新的文献求助10
2秒前
wanci应助相信未来采纳,获得10
2秒前
nczpf2010完成签到,获得积分10
3秒前
111111111发布了新的文献求助10
3秒前
冷艳的姿发布了新的文献求助10
3秒前
4秒前
学术渣渣发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
男子无才便是德完成签到,获得积分10
7秒前
7秒前
yuhangcao完成签到,获得积分10
7秒前
乐乐应助皮老师采纳,获得10
7秒前
SciGPT应助雪山飞龙采纳,获得10
8秒前
8秒前
隐形曼青应助anna采纳,获得10
9秒前
谦让成协完成签到,获得积分10
10秒前
SuperD发布了新的文献求助10
10秒前
sumugeng完成签到,获得积分10
11秒前
耍酷问兰发布了新的文献求助10
11秒前
11秒前
小宋爱科研完成签到 ,获得积分10
13秒前
YJ888发布了新的文献求助10
13秒前
赘婿应助孙亦沈采纳,获得10
14秒前
15秒前
17秒前
李爱国应助张于小丸子采纳,获得10
17秒前
laz完成签到,获得积分10
18秒前
19秒前
19秒前
ding应助老吴采纳,获得10
19秒前
20秒前
21秒前
MTRQ发布了新的文献求助10
21秒前
23秒前
Liufgui应助麦克阿宇采纳,获得10
23秒前
科研通AI2S应助Lily采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073