Tunnel Reconstruction With Block Level Precision by Combining Data-Driven Segmentation and Model-Driven Assembly

点云 块(置换群论) 稳健性(进化) 计算机科学 分割 算法 几何造型 离群值 人工智能 计算机视觉 几何学 数学 生物化学 基因 化学
作者
Zhen Cao,Dong Chen,Jiju Peethambaran,Zhenxin Zhang,Shaobo Xia,Liqiang Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (10): 8853-8872 被引量:13
标识
DOI:10.1109/tgrs.2020.3046624
摘要

Metro subway systems with underground tunnels form the backbone of urban transportations and therefore, accurate monitoring and maintenance of such subway systems are extremely necessary for a hassle-free daily commutation of billions of people. Though 3-D models of tunnels are widely used for the deformation monitoring of such subway tunnels, existing model-based tunnel monitoring systems rely on coarse geometric models and hence fail to capture complete tunnel health information. We present a two-stage algorithm to create high-fidelity geometric models of tunnel lining from Terrestrial Laser Scanning (TLS) point clouds. Tunnel geometry, defined at the detailed block entity level, is constructed through a data-driven block segmentation algorithm and a model-driven assembly technique. In our approach, the 3-D tunnel block segmentation problem has been translated into a bolt and lining joint recognition problem from 2-D images unfolded from the 3-D scans. The segmented 3-D blocks are matched with a set of predefined 3-D templates from a primitive library via a constraint total least squares matching method and the matched 3-D templates are assembled to create the final watertight tunnel model. The proposed tunnel modeling method has been comprehensively evaluated on Changzhou, Nanjing, and Wuhan tunnel data sets in terms of outliers, missing data, point density, topological representation, robustness, and geometric accuracy. The experiments on Nanjing and Changzhou metro tunnels show that the geometric model fitting incurs an error of only 7 mm, which is almost consistent with a mean density of 6 mm of these two data sets. Experimental results validate the advantages and potentials of the proposed tunnel modeling method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助莉亚采纳,获得30
1秒前
1秒前
lalala发布了新的文献求助10
2秒前
2秒前
yhy发布了新的文献求助10
2秒前
fufu驳回了吴青应助
3秒前
zhwang关注了科研通微信公众号
3秒前
科研通AI5应助大气无极采纳,获得10
4秒前
tyy完成签到,获得积分10
5秒前
青果发布了新的文献求助10
5秒前
5秒前
无花果应助wsnssbnhbx1采纳,获得10
6秒前
Atlantis发布了新的文献求助10
7秒前
格拉希尔发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
痴情的博超应助li采纳,获得200
9秒前
欣喜石头完成签到 ,获得积分10
9秒前
10秒前
劲秉应助la2ygoo采纳,获得10
11秒前
11秒前
11秒前
多多发布了新的文献求助10
11秒前
12秒前
醒了没醒醒完成签到,获得积分10
13秒前
SciGPT应助知源采纳,获得10
13秒前
sjr发布了新的文献求助10
13秒前
打打应助法外狂徒唐老鸭采纳,获得10
14秒前
莉亚发布了新的文献求助30
14秒前
8R60d8应助Jupiter采纳,获得10
14秒前
ceeray23发布了新的文献求助20
14秒前
qazwsxedc发布了新的文献求助10
15秒前
ding应助Lau采纳,获得10
15秒前
称心的问薇完成签到,获得积分10
16秒前
悟道希垚完成签到 ,获得积分10
16秒前
细腻心锁发布了新的文献求助10
17秒前
秦之之发布了新的文献求助20
18秒前
漫漫楚威风完成签到 ,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732805
求助须知:如何正确求助?哪些是违规求助? 3276926
关于积分的说明 9999703
捐赠科研通 2992607
什么是DOI,文献DOI怎么找? 1642376
邀请新用户注册赠送积分活动 780360
科研通“疑难数据库(出版商)”最低求助积分说明 748728