Insights from molecular dynamics simulations for computational protein design

分子动力学 动力学(音乐) 计算机科学 统计物理学 计算生物学 化学 物理 生物 计算化学 声学
作者
Matthew C. Childers,Valerie Daggett
出处
期刊:Molecular Systems Design and Engineering [Royal Society of Chemistry]
卷期号:2 (1): 9-33 被引量:178
标识
DOI:10.1039/c6me00083e
摘要

A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助潇潇雨歇采纳,获得20
2秒前
sssssssssss完成签到,获得积分10
3秒前
Julia完成签到,获得积分10
4秒前
5秒前
7秒前
Stove完成签到,获得积分10
8秒前
atom完成签到,获得积分10
9秒前
10秒前
qiang发布了新的文献求助10
10秒前
satan9发布了新的文献求助10
12秒前
liuyf完成签到 ,获得积分10
13秒前
Akim应助潇潇雨歇采纳,获得20
17秒前
杜兰特发布了新的文献求助10
17秒前
18秒前
Xiaoxiao应助yyauthor采纳,获得20
19秒前
pppsci完成签到,获得积分10
23秒前
jjj应助qiang采纳,获得20
26秒前
小二郎应助科研通管家采纳,获得10
29秒前
凡迪亚比应助科研通管家采纳,获得30
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
bohn123完成签到 ,获得积分10
31秒前
兔子里的乌龟完成签到 ,获得积分10
31秒前
31秒前
qiang完成签到,获得积分10
32秒前
ty心明亮完成签到 ,获得积分10
34秒前
liuyf关注了科研通微信公众号
36秒前
逆时针发布了新的文献求助10
38秒前
38秒前
风趣狗完成签到 ,获得积分10
40秒前
TT工作好认真完成签到 ,获得积分10
41秒前
玖念完成签到,获得积分10
43秒前
50秒前
satan9完成签到,获得积分10
50秒前
Six_seven完成签到,获得积分10
52秒前
海城好人完成签到,获得积分10
56秒前
56秒前
SciGPT应助赵成龙采纳,获得10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351