Insights from molecular dynamics simulations for computational protein design

分子动力学 动力学(音乐) 计算机科学 统计物理学 计算生物学 化学 物理 生物 计算化学 声学
作者
Matthew C. Childers,Valerie Daggett
出处
期刊:Molecular Systems Design and Engineering [The Royal Society of Chemistry]
卷期号:2 (1): 9-33 被引量:178
标识
DOI:10.1039/c6me00083e
摘要

A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郑总完成签到,获得积分10
刚刚
CipherSage应助马尼拉采纳,获得10
刚刚
SCI完成签到 ,获得积分10
1秒前
2秒前
healer发布了新的文献求助10
2秒前
123完成签到,获得积分20
3秒前
李健的小迷弟应助yili采纳,获得10
3秒前
L.完成签到,获得积分10
3秒前
木子发布了新的文献求助10
3秒前
威武诺言发布了新的文献求助10
3秒前
科研通AI5应助孙二二采纳,获得10
3秒前
3秒前
英姑应助rookie_b0采纳,获得10
4秒前
毛慢慢发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
kangkang完成签到,获得积分10
5秒前
丘比特应助东风第一枝采纳,获得10
5秒前
5秒前
丰知然应助normankasimodo采纳,获得10
6秒前
黑森林发布了新的文献求助30
6秒前
hu970发布了新的文献求助10
6秒前
6秒前
俭朴夜雪发布了新的文献求助30
6秒前
林上草应助lzj001983采纳,获得10
6秒前
小白完成签到,获得积分20
6秒前
药疯了完成签到,获得积分20
7秒前
桐桐应助123采纳,获得10
7秒前
风中寄云发布了新的文献求助10
7秒前
buuyoo发布了新的文献求助10
7秒前
zjudxn发布了新的文献求助10
7秒前
春夏爱科研完成签到,获得积分10
8秒前
飞翔的西红柿完成签到,获得积分10
8秒前
xzy完成签到,获得积分10
8秒前
L.发布了新的文献求助20
9秒前
Verdigris完成签到,获得积分10
10秒前
cindy完成签到,获得积分10
10秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
10秒前
金色热浪完成签到 ,获得积分10
10秒前
快去读文献完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759