An Automatic Deep Reinforcement Learning Based Credit Scoring Model using Deep-Q Network for Classification of Customer Credit Requests

信用风险 计算机科学 机器学习 人工智能 强化学习 利润(经济学) 信用记录 任务(项目管理) 信用评分 财务 业务 经济 计算机安全 微观经济学 管理
作者
Sudipta Paul,Agam Gupta,Arpan Kumar Kar,Vinay Singh
标识
DOI:10.1109/istas57930.2023.10306111
摘要

Credit risk assessment is a very crucial task for every firm. Especially, companies which give goods or services to their customers to be paid back on a later date or gives loans need to have an efficient credit risk assessment system to avoid financial losses. For accurate assessment of credit risk, precise credit scoring models are needed which the firms may use as a decision-support tool for making lending decisions. Approving credit to bad customers or denying credit to potential customers both can incur profit losses for the firm. Several researchers have addressed this credit risk assessment problem previously by building credit scoring models using various machine learning algorithms. But the performance of these models gets affected due to the skewed nature of the credit scoring data and the hidden correlations between the data features. It has been noted from literature that the credit scoring models are sensitive to the highly imbalanced class ratio which exists in credit scoring datasets. We address these challenges in this paper by proposing a deep-Q network based reinforcement learning model. The model uses two reward functions to help the model learn the optimal policy of detecting bad customers and maintain a balance between the credit approval and decline rate. We have then compared our DQN model performance with other classification models for the same dataset to demonstrate the effective utility of our model in improving the effective lending decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华秋柔完成签到,获得积分10
2秒前
一往之前发布了新的文献求助10
4秒前
4秒前
善学以致用应助nml采纳,获得10
5秒前
xxxx完成签到,获得积分10
6秒前
神勇友灵完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
咔什么嚓完成签到,获得积分10
8秒前
凉空气完成签到,获得积分10
8秒前
zho应助yao采纳,获得10
8秒前
小蘑菇应助一往之前采纳,获得10
9秒前
鳗鱼新之发布了新的文献求助10
9秒前
搞怪的白云完成签到 ,获得积分10
9秒前
ynlqjqx完成签到,获得积分10
9秒前
CBY完成签到,获得积分10
10秒前
小只完成签到,获得积分10
10秒前
科研通AI2S应助xxxx采纳,获得10
11秒前
11秒前
Leo发布了新的文献求助10
12秒前
orixero应助麦冬粑粑采纳,获得10
12秒前
万能图书馆应助哈哈采纳,获得10
12秒前
体贴啤酒完成签到,获得积分10
13秒前
sungem发布了新的文献求助10
13秒前
kk发布了新的文献求助10
14秒前
追梦发布了新的文献求助10
14秒前
CBY发布了新的文献求助10
15秒前
wy1693207859完成签到,获得积分10
15秒前
糊涂的胡发布了新的文献求助10
16秒前
花Cheung完成签到,获得积分10
17秒前
大白菜完成签到,获得积分10
18秒前
zxk完成签到,获得积分10
19秒前
zzzzzzzz发布了新的文献求助10
20秒前
Leo完成签到,获得积分10
21秒前
Guan完成签到 ,获得积分10
21秒前
yao完成签到,获得积分20
21秒前
小丸子完成签到,获得积分10
22秒前
23秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3713197
求助须知:如何正确求助?哪些是违规求助? 3261211
关于积分的说明 9917075
捐赠科研通 2974833
什么是DOI,文献DOI怎么找? 1631279
邀请新用户注册赠送积分活动 773856
科研通“疑难数据库(出版商)”最低求助积分说明 744472