A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation

特征(语言学) 聚类分析 模糊逻辑 模式识别(心理学) 模糊聚类 数学 火焰团簇 人工智能 算法 基质(化学分析) 计算机科学 数据挖掘 CURE数据聚类算法 哲学 语言学 材料科学 复合材料
作者
Haiyan Yu,Lerong Jiang,Jiulun Fan,Shuang Xie,Rong Lan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122270-122270 被引量:11
标识
DOI:10.1016/j.eswa.2023.122270
摘要

The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and "suppressed competitive learning" strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a "suppressed competitive learning" strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语完成签到 ,获得积分10
刚刚
岁月如歌完成签到,获得积分10
1秒前
马里奥好难完成签到 ,获得积分10
2秒前
浮生发布了新的文献求助10
3秒前
传奇3应助张莹采纳,获得10
4秒前
欢呼小蚂蚁完成签到,获得积分10
9秒前
御景风发布了新的文献求助20
10秒前
10秒前
wanci应助浮生采纳,获得10
11秒前
所所应助ran采纳,获得10
11秒前
colddie发布了新的文献求助10
11秒前
12秒前
13秒前
默念发布了新的文献求助10
18秒前
Hello应助asd采纳,获得10
18秒前
默念完成签到,获得积分10
24秒前
25秒前
luanzhaohui完成签到,获得积分10
26秒前
自然的听寒完成签到 ,获得积分10
26秒前
27秒前
加油鸭发布了新的文献求助10
27秒前
29秒前
only完成签到,获得积分20
30秒前
xiaobei发布了新的文献求助30
30秒前
32秒前
36秒前
迷人幻波发布了新的文献求助10
36秒前
zmy发布了新的文献求助10
36秒前
orixero应助zhlh采纳,获得10
37秒前
非一样的感觉完成签到,获得积分10
37秒前
852应助xiaobei采纳,获得30
38秒前
不配.应助科研通管家采纳,获得20
38秒前
siyu0416应助科研通管家采纳,获得10
38秒前
小马甲应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
40秒前
方超完成签到,获得积分10
41秒前
42秒前
ured发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323