体内
纳米医学
表面改性
超声波
化学
流式细胞术
生物物理学
纳米技术
小泡
临床前影像学
纳米颗粒
光学成像
免疫原性
分子成像
生物医学工程
材料科学
医学
抗体
生物化学
生物
分子生物学
免疫学
物理
生物技术
物理化学
放射科
膜
光学
作者
Bill Ling,Jeong Hoon Ko,Benjamin Stordy,Yuwei Zhang,Tighe F. Didden,Dina Malounda,M Swift,Warren C. W. Chan,Mikhail G. Shapiro
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-11-20
卷期号:23 (23): 10748-10757
被引量:1
标识
DOI:10.1021/acs.nanolett.3c02780
摘要
Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as systemically injectable nanomaterials have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact in vivo behavior. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface we can alter these interactions and thereby modify GVs' in vivo performance. These results provide critical insights for the development of GVs as agents for nanomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI