卷积(计算机科学)
断层(地质)
方位(导航)
振动
计算机科学
噪音(视频)
人工神经网络
特征提取
情态动词
二次方程
人工智能
语音识别
模式识别(心理学)
电子工程
工程类
声学
数学
化学
物理
几何学
地震学
高分子化学
图像(数学)
地质学
作者
Yan Jin,Jianbin Liao,J. Gao,Weiwei Zhang,Chaoming Huang,Hongliang Yu
出处
期刊:Sensors
[MDPI AG]
日期:2023-11-13
卷期号:23 (22): 9155-9155
被引量:1
摘要
In this paper, a quadratic convolution neural network (QCNN) using both audio and vibration signals is utilized for bearing fault diagnosis. Specifically, to make use of multi-modal information for bearing fault diagnosis, the audio and vibration signals are first fused together using a 1 × 1 convolution. Then, a quadratic convolution neural network is applied for the fusion feature extraction. Finally, a decision module is designed for fault classification. The proposed method utilizes the complementary information of audio and vibration signals, and is insensitive to noise. The experimental results show that the accuracy of the proposed method can achieve high accuracies for both single and multiple bearing fault diagnosis in the noisy situations. Moreover, the combination of two-modal data helps improve the performance under all conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI