Pavement Distress Detection Using Street View Images Captured via Action Camera

计算机科学 特征提取 编码器 人工智能 目标检测 变压器 特征(语言学) 计算机视觉 模式识别(心理学) 机器学习 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Yu‐Chen Liu,Fang Liu,Wei Liu,Yucheng Huang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 738-747 被引量:10
标识
DOI:10.1109/tits.2023.3306578
摘要

Timely and accurately detection as well as rehabilitation of road surface defects are of utmost importance for ensuring road safety and minimizing maintenance cost. However, the variety of pavement distress types and forms makes it difficult to accurately classify and detect them. To tackle the issue, this paper proposes a novel target detection model YOLO-SST based on YOLOv5 with the improvement in pavement distress features. First, a Shuffle Attention mechanism is introduced in the feature extraction backbone network to enhance the detection ability without significantly increasing the computational cost. Secondly, we add a detection layer and embed Swin-Transformer encoder blocks into the C3 module to capture global and contextual information. Finally, to improve the model's detection ability, transfer learning is employed on a self-made dataset called RDDdect_2023, which consists of street view images captured via a DJI Action camera mounted on the car. Experimental results demonstrate that the YOLO-SST model outperforms YOLOv5 and other target detection models in terms of accuracy, recall rate, and mAP@0.5 value for detecting pavement distresses. This confirms that the YOLO-SST model has stronger feature extraction and fusion capabilities, resulting in better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白完成签到,获得积分10
2秒前
英姑应助明理小霸王采纳,获得10
2秒前
安安爱阎魔完成签到,获得积分10
3秒前
fy发布了新的文献求助20
4秒前
4秒前
majf发布了新的文献求助10
4秒前
高兴采文发布了新的文献求助10
4秒前
panzhongjie完成签到,获得积分10
4秒前
Mr.Su完成签到 ,获得积分10
4秒前
Jasper应助超帅蓝血采纳,获得10
4秒前
大个应助manzhouwang采纳,获得10
4秒前
4秒前
4秒前
凌擎宇发布了新的文献求助10
4秒前
5秒前
冰糖发布了新的文献求助10
5秒前
嘻嘻嘻完成签到,获得积分10
5秒前
科研通AI2S应助JUGG采纳,获得10
6秒前
YuanLeiZhang完成签到,获得积分10
7秒前
OKOK应助列子采纳,获得20
7秒前
熊四是誰完成签到,获得积分10
7秒前
yznfly应助开朗的心情采纳,获得30
7秒前
CipherSage应助开朗的心情采纳,获得10
7秒前
明理小霸王完成签到,获得积分20
8秒前
神明发布了新的文献求助10
9秒前
9秒前
大个应助蛋宝采纳,获得10
9秒前
9秒前
10秒前
10秒前
gyhhl完成签到,获得积分10
10秒前
凌擎宇完成签到,获得积分20
10秒前
11秒前
冷艳的火龙果完成签到,获得积分20
11秒前
Yuanyuan发布了新的文献求助10
11秒前
田様应助朴实山兰采纳,获得10
12秒前
老王发布了新的文献求助10
12秒前
糖优优完成签到,获得积分10
12秒前
谨慎的万言完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149