粒体自噬
神经毒性
活性氧
毒性
化学
莫里斯水上航行任务
线粒体
线粒体分裂
内分泌学
药理学
内科学
海马体
生物
生物化学
医学
细胞凋亡
自噬
作者
Wenli Yu,Xiaolin Chang,Jianzhao Liao,Jianping Quan,Siying Liu,Ting He,Gaolong Zhong,Jilei Huang,Liu Z,Zhaoxin Tang
标识
DOI:10.1016/j.envpol.2023.122474
摘要
Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI