清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma

数量结构-活动关系 对接(动物) 胶质母细胞瘤 抗癌药 化学 立体化学 计算生物学 数学 生物系统 计算机科学 药品 生物 药理学 医学 护理部 癌症研究
作者
Meichen Pan,Lingxue Cheng,Yiguo Wang,Chunyi Lyu,Chao Hou,Qiming Zhang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fphar.2023.1249041
摘要

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
46秒前
吊炸天完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助wuuw采纳,获得10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
wuuw发布了新的文献求助10
1分钟前
1分钟前
袁建波完成签到,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
REAL完成签到 ,获得积分10
3分钟前
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
闲人颦儿完成签到,获得积分10
4分钟前
4分钟前
4分钟前
dfgux发布了新的文献求助10
4分钟前
4分钟前
三明治发布了新的文献求助10
4分钟前
达克赛德完成签到 ,获得积分10
5分钟前
gsji完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
alex12259完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
咯咯咯完成签到 ,获得积分10
7分钟前
gege完成签到,获得积分10
9分钟前
harden9159完成签到,获得积分10
10分钟前
11分钟前
11分钟前
11分钟前
科研通AI6应助科研通管家采纳,获得10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516196
求助须知:如何正确求助?哪些是违规求助? 4609279
关于积分的说明 14514700
捐赠科研通 4545877
什么是DOI,文献DOI怎么找? 2490961
邀请新用户注册赠送积分活动 1472760
关于科研通互助平台的介绍 1444569