Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma

数量结构-活动关系 对接(动物) 胶质母细胞瘤 抗癌药 化学 立体化学 计算生物学 数学 生物系统 计算机科学 药品 生物 药理学 医学 护理部 癌症研究
作者
Meichen Pan,Lingxue Cheng,Yiguo Wang,Chunyi Lyu,Chao Hou,Qiming Zhang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fphar.2023.1249041
摘要

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷碧发布了新的文献求助10
2秒前
飘逸宛丝完成签到,获得积分10
3秒前
qzaima发布了新的文献求助10
3秒前
米酒完成签到,获得积分10
5秒前
step_stone给step_stone的求助进行了留言
5秒前
乐乐应助ayin采纳,获得10
6秒前
无花果应助hhh采纳,获得10
8秒前
叁壹粑粑完成签到,获得积分10
9秒前
酷酷碧完成签到,获得积分10
9秒前
10秒前
磕盐民工完成签到,获得积分10
11秒前
11秒前
忘羡222发布了新的文献求助20
11秒前
我是老大应助TT采纳,获得10
13秒前
13秒前
13秒前
雪鸽鸽完成签到,获得积分10
14秒前
完美世界应助开心青旋采纳,获得10
14秒前
LD完成签到 ,获得积分10
16秒前
xjy完成签到 ,获得积分10
16秒前
qzaima完成签到,获得积分10
16秒前
17秒前
xueshufengbujue完成签到,获得积分10
17秒前
楼寒天发布了新的文献求助10
17秒前
18秒前
科研通AI5应助111111111采纳,获得10
19秒前
19秒前
sunsunsun完成签到,获得积分10
19秒前
哎嘤斯坦完成签到,获得积分10
21秒前
21秒前
sweetbearm应助潦草采纳,获得10
22秒前
sunsunsun发布了新的文献求助10
22秒前
酷波er应助Mars采纳,获得10
23秒前
迪士尼在逃后母完成签到,获得积分10
23秒前
23秒前
我是老大应助su采纳,获得10
24秒前
hhh发布了新的文献求助10
25秒前
26秒前
科研通AI5应助魏伯安采纳,获得10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824