Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma

数量结构-活动关系 对接(动物) 胶质母细胞瘤 抗癌药 化学 立体化学 计算生物学 数学 生物系统 计算机科学 药品 生物 药理学 医学 护理部 癌症研究
作者
Meichen Pan,Lingxue Cheng,Yiguo Wang,Chunyi Lyu,Chao Hou,Qiming Zhang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fphar.2023.1249041
摘要

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoying发布了新的文献求助10
刚刚
shenzhou9完成签到,获得积分20
刚刚
刚刚
1秒前
单薄惜文发布了新的文献求助10
1秒前
2秒前
野酒完成签到,获得积分10
2秒前
2秒前
3D完成签到,获得积分10
2秒前
Tom完成签到,获得积分10
3秒前
Dr_wang发布了新的文献求助10
3秒前
科研岗完成签到,获得积分10
3秒前
陶醉的又夏完成签到 ,获得积分10
3秒前
萧水白应助yydsyyd采纳,获得10
3秒前
4秒前
刘茂甫发布了新的文献求助10
4秒前
爱吃树梅子完成签到,获得积分10
5秒前
Ry发布了新的文献求助20
5秒前
顾矜应助li采纳,获得10
5秒前
6秒前
李焕弟发布了新的文献求助10
6秒前
wxy发布了新的文献求助10
6秒前
研友_nEowP8发布了新的文献求助10
6秒前
月亮发布了新的文献求助10
7秒前
爱飞的乌龟完成签到,获得积分10
7秒前
Laity完成签到,获得积分10
7秒前
chengymao完成签到,获得积分10
8秒前
8秒前
Ava应助李守峰采纳,获得10
8秒前
Silverexile完成签到,获得积分10
8秒前
花椰菜完成签到,获得积分10
8秒前
缥缈飞烟发布了新的文献求助10
9秒前
投必快业必毕完成签到,获得积分10
9秒前
orixero应助luu采纳,获得10
10秒前
Sunny完成签到,获得积分10
10秒前
10秒前
11秒前
lyz完成签到,获得积分10
11秒前
11秒前
花椰菜发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327