Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma

数量结构-活动关系 对接(动物) 胶质母细胞瘤 抗癌药 化学 立体化学 计算生物学 数学 生物系统 计算机科学 药品 生物 药理学 医学 护理部 癌症研究
作者
Meichen Pan,Lingxue Cheng,Yiguo Wang,Chunyi Lyu,Chao Hou,Qiming Zhang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fphar.2023.1249041
摘要

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjj发布了新的文献求助10
刚刚
JamesPei应助Ale采纳,获得10
1秒前
俭朴夜雪发布了新的文献求助10
1秒前
1秒前
1秒前
852应助leo采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
Amicable发布了新的文献求助10
3秒前
3秒前
一一发布了新的文献求助50
3秒前
糟糕的鞋垫完成签到,获得积分10
3秒前
3秒前
就比较好发布了新的文献求助10
3秒前
RRR232完成签到,获得积分10
4秒前
欣喜绍辉发布了新的文献求助10
5秒前
丽丽完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
八九寺完成签到,获得积分10
6秒前
祺玄发布了新的文献求助10
6秒前
577发布了新的文献求助10
6秒前
桐桐应助花痴的小松鼠采纳,获得10
7秒前
Jasper应助刻苦的旺仔采纳,获得10
7秒前
7秒前
ethan2801发布了新的文献求助10
7秒前
wanci应助善良的血茗采纳,获得10
7秒前
7秒前
8秒前
踩踩踩发布了新的文献求助10
8秒前
瞌睡米线发布了新的文献求助10
8秒前
黑就嘿发布了新的文献求助10
8秒前
10秒前
zjj关闭了zjj文献求助
10秒前
10秒前
愉快寄翠完成签到,获得积分20
10秒前
11秒前
葬天弃完成签到,获得积分20
11秒前
1397发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490