Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma

数量结构-活动关系 对接(动物) 胶质母细胞瘤 抗癌药 化学 立体化学 计算生物学 数学 生物系统 计算机科学 药品 生物 药理学 医学 护理部 癌症研究
作者
Meichen Pan,Lingxue Cheng,Yiguo Wang,Chunyi Lyu,Chao Hou,Qiming Zhang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fphar.2023.1249041
摘要

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niki完成签到,获得积分20
1秒前
God_wei3完成签到,获得积分10
1秒前
1秒前
1秒前
HaniRxf完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
4秒前
含蓄的三颜完成签到,获得积分10
6秒前
Dick发布了新的文献求助10
6秒前
6秒前
蓝天发布了新的文献求助10
6秒前
zaaaz完成签到,获得积分10
7秒前
赘婿应助tidongzhiwu采纳,获得10
7秒前
7秒前
无极微光应助王艳采纳,获得20
7秒前
壮观的莺完成签到 ,获得积分10
8秒前
WMT完成签到 ,获得积分10
8秒前
urologywang发布了新的文献求助30
8秒前
雪白的康发布了新的文献求助50
9秒前
科研通AI2S应助现代代桃采纳,获得10
12秒前
12秒前
12秒前
壮观的莺关注了科研通微信公众号
12秒前
13秒前
比格蹦蹦发布了新的文献求助10
13秒前
彧九发布了新的文献求助10
13秒前
Rgly完成签到 ,获得积分10
14秒前
魔幻的访云完成签到 ,获得积分10
15秒前
科研通AI2S应助echo采纳,获得10
15秒前
16秒前
小星星完成签到 ,获得积分10
16秒前
17秒前
欧高完成签到 ,获得积分10
17秒前
乐观半邪发布了新的文献求助10
17秒前
wwyy发布了新的文献求助10
18秒前
周才发布了新的文献求助10
18秒前
tidongzhiwu发布了新的文献求助10
19秒前
19秒前
万事可乐发布了新的文献求助20
21秒前
小魔女完成签到,获得积分10
21秒前
123ywh发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734809
求助须知:如何正确求助?哪些是违规求助? 5356250
关于积分的说明 15327788
捐赠科研通 4879347
什么是DOI,文献DOI怎么找? 2621815
邀请新用户注册赠送积分活动 1571046
关于科研通互助平台的介绍 1527826