反推
控制理论(社会学)
弹道
控制器(灌溉)
计算机科学
人工神经网络
事件(粒子物理)
径向基函数
跟踪(教育)
Lyapunov稳定性
李雅普诺夫函数
滤波器(信号处理)
控制工程
理论(学习稳定性)
功能(生物学)
自适应控制
控制(管理)
工程类
人工智能
非线性系统
计算机视觉
心理学
教育学
物理
量子力学
天文
机器学习
农学
生物
进化生物学
作者
Peihao Sun,Ming Zhu,Yifei Zhang,Tian Chen,Zewei Zheng
标识
DOI:10.1109/icus58632.2023.10318510
摘要
This study presents a novel trajectory tracking controller for a stratospheric airship, focusing on event-triggered control and prescribed performance. The proposed controller, based on the framework of prescribed performance backstepping method, combines a second-order derivative filter and a radial basis function neural network. The controller design incorporates an event-triggered strategy to achieve prescribed performance objectives. The derivative filter addresses the computational complexity associated with the virtual control law, while the radial basis function neural network estimates unknown terms. Through Lyapunov analysis, the stability and non-Zeno behavior of the system are established. Simulation results confirm the effectiveness of the designed controller in achieving the desired trajectory tracking objectives.
科研通智能强力驱动
Strongly Powered by AbleSci AI