Controlling Dendrite Formation for Long-Term Cyclability and Fast Li+ Diffusion Kinetics in Solid-State Electrolyte Li7La3Zr2O12

材料科学 烧结 电解质 微观结构 离子电导率 枝晶(数学) 扩散 晶界 相(物质) 电导率 快离子导体 电流密度 分析化学(期刊) 粒度 晶界扩散系数 动力学 化学工程 复合材料 电极 化学 热力学 物理化学 几何学 物理 工程类 量子力学 色谱法 有机化学 数学
作者
Jae-Won Sim,Rae-Hyun Lee,Hyun‐Kyung Kim,Jong Kyu Lee,Jung Rag Yoon,Seung-Hwan Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:35 (16): 6538-6548 被引量:5
标识
DOI:10.1021/acs.chemmater.3c01658
摘要

Ga-doped Li7La3Zr2O12 (Ga-LLZO) solid-state electrolyte is a promising material for advanced batteries due to its superior ionic conductivity and mechanical properties. However, Ga-LLZO is challenged by high grain boundary (GB) resistance and dendrite propagation. Therefore, in this study, we suggest the two-step sintering (TSS) method for controlling the microstructure, resulting in lower GB resistance and achieving superior dendrite resistance. To elucidate the cycling performance, a critical current density (CCD) test was performed on a Ga-LLZO sample fabricated with TSS. As a result, the Ga-LLZO sample fabricated with TSS demonstrates a superior CCD value of 0.32 mA cm–2 as well as shows stable cycling at a current density of 0.2 mA cm–2. According to the impedance analysis, the sample fabricated with TSS demonstrates a significant increase in ionic conductivity compared to the sample fabricated with the conventional sintering (CS) method. This phenomenon implies that the enhanced sintering technique of TSS can reduce the GB resistance and dendrite formation by achieving the densification and tight GB. Extensive investigation into the dendrite formation mechanism has provided compelling evidence that dendrites are not solely composed of pure Li but rather consist of a compound containing both C and O elements. This finding significantly contributes to the understanding of the composition and nature of dendrites in Ga-LLZO, shedding light on their role in the acceleration of the phase decomposition process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwj28完成签到,获得积分10
1秒前
顺利毕业完成签到 ,获得积分10
1秒前
1秒前
Wang关注了科研通微信公众号
3秒前
6秒前
魁梧的凌瑶完成签到,获得积分10
7秒前
清澈完成签到,获得积分10
7秒前
HEROER发布了新的文献求助10
7秒前
英姑应助顺利的囧采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
wy.he应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
wy.he应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
wy.he应助科研通管家采纳,获得10
11秒前
Ky_Mac应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Ky_Mac应助科研通管家采纳,获得30
11秒前
Twonej应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
chen应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Twonej应助科研通管家采纳,获得30
11秒前
郑浚杳发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861