Deconfounded Visual Question Generation with Causal Inference

计算机科学 推论 人工智能 因果推理 自然语言处理 计量经济学 数学
作者
Jiali Chen,Zhen‐Ren Guo,Jiayuan Xie,Yi Cai,Qing Li
标识
DOI:10.1145/3581783.3612536
摘要

Visual Question Generation (VQG) task aims to generate meaningful and logically reasonable questions about the given image targeting an answer. Existing methods mainly focus on the visual concepts present in the image for question generation and have shown remarkable performance in VQG. However, these models frequently learn highly co-occurring object relationships and attributes, which is an inherent bias in question generation. This previously overlooked bias causes models to over-exploit the spurious correlations among visual features, the target answer, and the question. Therefore, they may generate inappropriate questions that contradict the visual content or facts. In this paper, we first introduce a causal perspective on VQG and adopt the causal graph to analyze spurious correlations among variables. Building on the analysis, we propose a Knowledge Enhanced Causal Visual Question Generation (KECVQG) model to mitigate the impact of spurious correlations in question generation. Specifically, an interventional visual feature extractor (IVE) is introduced in KECVQG, which aims to obtain unbiased visual features by disentangling. Then a knowledge-guided representation extractor (KRE) is employed to align unbiased features with external knowledge. Finally, the output features from KRE are sent into a standard transformer decoder to generate questions. Extensive experiments on the VQA v2.0 and OKVQA datasets show that KECVQG significantly outperforms existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
飞快的孱完成签到,获得积分10
1秒前
ssy完成签到,获得积分10
3秒前
风格完成签到,获得积分10
6秒前
bi完成签到 ,获得积分10
7秒前
任夏完成签到,获得积分10
11秒前
19秒前
26秒前
Brian完成签到,获得积分10
26秒前
26秒前
一二完成签到,获得积分10
27秒前
正己化人应助科研通管家采纳,获得10
31秒前
Hanoi347应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
Dharma_Bums发布了新的文献求助10
31秒前
南宫应助科研通管家采纳,获得10
31秒前
momo应助科研通管家采纳,获得10
31秒前
momo应助科研通管家采纳,获得10
31秒前
正己化人应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
1111111111应助科研通管家采纳,获得10
31秒前
嘿嘿完成签到,获得积分0
31秒前
蒋杰应助科研通管家采纳,获得10
32秒前
fufu完成签到 ,获得积分10
33秒前
不做Aspirin完成签到 ,获得积分10
35秒前
37秒前
kk完成签到,获得积分10
37秒前
ambrose37完成签到 ,获得积分10
38秒前
奋斗的凡完成签到 ,获得积分10
38秒前
王科婷完成签到 ,获得积分10
39秒前
mayamaya完成签到,获得积分10
40秒前
忧虑的墨镜完成签到 ,获得积分10
40秒前
xgx984发布了新的文献求助10
44秒前
45秒前
fei应助kk采纳,获得10
46秒前
小二郎应助言一采纳,获得10
47秒前
柒柒发布了新的文献求助10
49秒前
50秒前
you完成签到,获得积分10
51秒前
术语完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563