Deconfounded Visual Question Generation with Causal Inference

计算机科学 推论 人工智能 因果推理 自然语言处理 计量经济学 数学
作者
Jiali Chen,Zhen‐Ren Guo,Jiayuan Xie,Yi Cai,Qing Li
标识
DOI:10.1145/3581783.3612536
摘要

Visual Question Generation (VQG) task aims to generate meaningful and logically reasonable questions about the given image targeting an answer. Existing methods mainly focus on the visual concepts present in the image for question generation and have shown remarkable performance in VQG. However, these models frequently learn highly co-occurring object relationships and attributes, which is an inherent bias in question generation. This previously overlooked bias causes models to over-exploit the spurious correlations among visual features, the target answer, and the question. Therefore, they may generate inappropriate questions that contradict the visual content or facts. In this paper, we first introduce a causal perspective on VQG and adopt the causal graph to analyze spurious correlations among variables. Building on the analysis, we propose a Knowledge Enhanced Causal Visual Question Generation (KECVQG) model to mitigate the impact of spurious correlations in question generation. Specifically, an interventional visual feature extractor (IVE) is introduced in KECVQG, which aims to obtain unbiased visual features by disentangling. Then a knowledge-guided representation extractor (KRE) is employed to align unbiased features with external knowledge. Finally, the output features from KRE are sent into a standard transformer decoder to generate questions. Extensive experiments on the VQA v2.0 and OKVQA datasets show that KECVQG significantly outperforms existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cannon8应助清浅采纳,获得20
1秒前
1秒前
1秒前
个性乐荷应助小树采纳,获得10
1秒前
1秒前
德行天下完成签到,获得积分10
1秒前
2秒前
Jason发布了新的文献求助50
2秒前
AOLIN完成签到,获得积分10
3秒前
dd完成签到,获得积分10
3秒前
3秒前
3秒前
帆儿完成签到,获得积分20
3秒前
4秒前
sunjr发布了新的文献求助10
5秒前
5秒前
爱吃泡芙发布了新的文献求助10
5秒前
坚定的骁完成签到,获得积分10
6秒前
6秒前
Ava应助大山采纳,获得10
7秒前
滴滴答答发布了新的文献求助10
7秒前
帆儿发布了新的文献求助10
7秒前
7秒前
zxy完成签到,获得积分10
7秒前
酷酷画笔发布了新的文献求助10
8秒前
ltr发布了新的文献求助10
8秒前
缓慢小蚂蚁完成签到 ,获得积分10
10秒前
李璃发布了新的文献求助20
10秒前
LL发布了新的文献求助10
10秒前
酷酷的老太完成签到,获得积分10
11秒前
慕青应助无无采纳,获得10
11秒前
11秒前
boleyn完成签到,获得积分10
12秒前
小树完成签到,获得积分10
12秒前
13秒前
跳跃仙人掌应助Jason采纳,获得100
14秒前
Jasper应助沉默黑猫采纳,获得10
15秒前
16秒前
mjm发布了新的文献求助10
16秒前
yy完成签到 ,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234