A comparison of 18F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study

无线电技术 医学 腺癌 淋巴结转移 淋巴结 放射科 转移 癌症 病理 内科学
作者
Kun‐Han Lue,Yu‐Hung Chen,Sung‐Chao Chu,Bee-Song Chang,Chih-Bin Lin,Yen‐Chang Chen,Hsin‐Hon Lin,Shu‐Hsin Liu
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (12): 1094-1105 被引量:3
标识
DOI:10.1097/mnm.0000000000001776
摘要

Objective The performance of 18 F-FDG PET-based radiomics and deep learning in detecting pathological regional nodal metastasis (pN+) in resectable lung adenocarcinoma varies, and their use across different generations of PET machines has not been thoroughly investigated. We compared handcrafted radiomics and deep learning using different PET scanners to predict pN+ in resectable lung adenocarcinoma. Methods We retrospectively analyzed pretreatment 18 F-FDG PET from 148 lung adenocarcinoma patients who underwent curative surgery. Patients were separated into analog (n = 131) and digital (n = 17) PET cohorts. Handcrafted radiomics and a ResNet-50 deep-learning model of the primary tumor were used to predict pN+ status. Models were trained in the analog PET cohort, and the digital PET cohort was used for cross-scanner validation. Results In the analog PET cohort, entropy, a handcrafted radiomics, independently predicted pN+. However, the areas under the receiver-operating-characteristic curves (AUCs) and accuracy for entropy were only 0.676 and 62.6%, respectively. The ResNet-50 model demonstrated a better AUC and accuracy of 0.929 and 94.7%, respectively. In the digital PET validation cohort, the ResNet-50 model also demonstrated better AUC (0.871 versus 0.697) and accuracy (88.2% versus 64.7%) than entropy. The ResNet-50 model achieved comparable specificity to visual interpretation but with superior sensitivity (83.3% versus 66.7%) in the digital PET cohort. Conclusion Applying deep learning across different generations of PET scanners may be feasible and better predict pN+ than handcrafted radiomics. Deep learning may complement visual interpretation and facilitate tailored therapeutic strategies for resectable lung adenocarcinoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助谢家宝树采纳,获得10
刚刚
1秒前
爱听歌雪旋完成签到 ,获得积分10
1秒前
小二郎应助迷路的小牛马采纳,获得10
2秒前
温乐松发布了新的文献求助10
2秒前
南宫炽滔完成签到 ,获得积分10
2秒前
2秒前
陈冲发布了新的文献求助10
3秒前
orixero应助66666666采纳,获得10
3秒前
白英发布了新的文献求助10
3秒前
二师兄小刘完成签到,获得积分10
3秒前
4秒前
jennie完成签到,获得积分10
4秒前
阿kkk完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
一念之间发布了新的文献求助10
5秒前
5秒前
毛豆应助青栞采纳,获得10
6秒前
wxz1998完成签到,获得积分10
6秒前
6秒前
desperate完成签到,获得积分10
6秒前
RUC_Zhao完成签到,获得积分10
7秒前
8秒前
asww发布了新的文献求助10
9秒前
9秒前
冷傲的靖易完成签到,获得积分20
9秒前
汉堡包应助隐形翼采纳,获得10
9秒前
Akim应助tr采纳,获得10
10秒前
HeyHsc完成签到,获得积分10
11秒前
12秒前
sunshine完成签到,获得积分10
12秒前
一念之间完成签到,获得积分10
12秒前
义气白萱完成签到,获得积分20
13秒前
谢家宝树发布了新的文献求助10
14秒前
14秒前
华仔应助ZH采纳,获得10
14秒前
叨叨完成签到,获得积分10
14秒前
充电宝应助优秀乐松采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414