A comparison of 18F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study

无线电技术 医学 腺癌 淋巴结转移 淋巴结 放射科 转移 癌症 病理 内科学
作者
Kun‐Han Lue,Yu‐Hung Chen,Sung‐Chao Chu,Bee-Song Chang,Chih-Bin Lin,Yen‐Chang Chen,Hsin‐Hon Lin,Shu‐Hsin Liu
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (12): 1094-1105 被引量:3
标识
DOI:10.1097/mnm.0000000000001776
摘要

Objective The performance of 18 F-FDG PET-based radiomics and deep learning in detecting pathological regional nodal metastasis (pN+) in resectable lung adenocarcinoma varies, and their use across different generations of PET machines has not been thoroughly investigated. We compared handcrafted radiomics and deep learning using different PET scanners to predict pN+ in resectable lung adenocarcinoma. Methods We retrospectively analyzed pretreatment 18 F-FDG PET from 148 lung adenocarcinoma patients who underwent curative surgery. Patients were separated into analog (n = 131) and digital (n = 17) PET cohorts. Handcrafted radiomics and a ResNet-50 deep-learning model of the primary tumor were used to predict pN+ status. Models were trained in the analog PET cohort, and the digital PET cohort was used for cross-scanner validation. Results In the analog PET cohort, entropy, a handcrafted radiomics, independently predicted pN+. However, the areas under the receiver-operating-characteristic curves (AUCs) and accuracy for entropy were only 0.676 and 62.6%, respectively. The ResNet-50 model demonstrated a better AUC and accuracy of 0.929 and 94.7%, respectively. In the digital PET validation cohort, the ResNet-50 model also demonstrated better AUC (0.871 versus 0.697) and accuracy (88.2% versus 64.7%) than entropy. The ResNet-50 model achieved comparable specificity to visual interpretation but with superior sensitivity (83.3% versus 66.7%) in the digital PET cohort. Conclusion Applying deep learning across different generations of PET scanners may be feasible and better predict pN+ than handcrafted radiomics. Deep learning may complement visual interpretation and facilitate tailored therapeutic strategies for resectable lung adenocarcinoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪白萱发布了新的文献求助10
刚刚
免VVVV免完成签到,获得积分10
1秒前
1秒前
科学徐发布了新的文献求助10
1秒前
说好不吃肥肉的完成签到,获得积分10
2秒前
2秒前
浮生完成签到 ,获得积分10
3秒前
求知小生完成签到,获得积分10
3秒前
4秒前
4秒前
zenabia完成签到 ,获得积分10
4秒前
fxy完成签到 ,获得积分10
4秒前
lllliu完成签到,获得积分10
4秒前
酒糟凤爪完成签到,获得积分10
4秒前
chemier027发布了新的文献求助10
5秒前
无水乙醚完成签到,获得积分10
5秒前
5秒前
语秋发布了新的文献求助10
5秒前
初晴完成签到,获得积分10
6秒前
勤奋的盼山完成签到 ,获得积分10
6秒前
zonker完成签到,获得积分10
7秒前
7秒前
NicotineZen完成签到,获得积分10
7秒前
wzx完成签到 ,获得积分10
8秒前
没问题完成签到,获得积分10
8秒前
9秒前
9秒前
yznfly应助catherine采纳,获得20
9秒前
jenningseastera完成签到,获得积分0
9秒前
小马甲应助科学徐采纳,获得10
9秒前
婉婉完成签到,获得积分10
9秒前
ASSA发布了新的文献求助10
9秒前
Bearbiscuit完成签到,获得积分10
9秒前
善学以致用应助PHHHH采纳,获得10
9秒前
MAVS完成签到,获得积分10
9秒前
lishuai完成签到,获得积分10
10秒前
10秒前
丘比特应助li采纳,获得10
10秒前
日月同辉完成签到,获得积分10
10秒前
TOF完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659