Dynamical model and numerical study of cavitation bubble in ultrasonic assisted electrochemical polishing solution of selective laser melting NiTi alloy

空化 材料科学 抛光 超声波传感器 气泡 冲击波 合金 机械 复合材料 声学 物理
作者
Jianwei Che,Guangfeng Shi,Tianwen Zhou
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:98 (11): 115980-115980 被引量:1
标识
DOI:10.1088/1402-4896/ad0332
摘要

Abstract In the process of ultrasound assisted electrochemical polishing of selective laser melting (SLM) NiTi alloy, a large number of cavitation bubbles will be generated in the anode and cathode, and these cavitation bubbles will expand and compress rapidly until finally collapse. At the moment of collapse, high temperature and high pressure will occur, and at the same time, pressure shock wave and micro-jet will be produced, which will have a certain impact on material removal during polishing. In order to explore the mechanism of ultrasonic assisted electrochemical polishing, in this paper, the dynamics of cavitation bubbles with free interface and rigid interface are analyzed by ultrasonic assisted electrochemical polishing. The dynamics models of single cavitation bubble and two cavitation bubbles are established. The fourth order Runge–Kutta method was used to solve the model numerically, and the influence of electric field intensity, initial bubble radius, sound pressure amplitude and ultrasonic frequency on the dynamics of cavitation bubble was analyzed. The results show that in the range of f = 1–10 KHz, the initial radius of bubble is 0.01–0.05 micron, the sound pressure amplitude is 10 3 Pa, and the electric field intensity is 10 4 V m −1 , the cavitation movement gradually becomes regular, and it goes through a complete process of expansion, contraction and then collapse, which is beneficial to the cavitation effect. This provides a theoretical basis for further research on the mechanism of ultrasonic assisted electrochemical polishing of SLM-NiTi alloy, which is of great significance for broadening the processing of additive manufacturing parts with low cost, high efficiency, and consistent quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小酚发布了新的文献求助10
1秒前
FashionBoy应助DEF采纳,获得30
2秒前
日月同辉发布了新的文献求助10
2秒前
2秒前
瑶瑶完成签到,获得积分10
3秒前
稀松完成签到,获得积分0
4秒前
竹筏过海应助科研通管家采纳,获得30
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
1236应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
cannon8应助科研通管家采纳,获得20
5秒前
充电宝应助科研通管家采纳,获得20
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
heyan完成签到,获得积分10
6秒前
6秒前
苏玖染发布了新的文献求助30
7秒前
时尚的萝完成签到 ,获得积分10
7秒前
鲤鱼青槐完成签到,获得积分10
8秒前
orixero应助hua采纳,获得10
8秒前
如果发布了新的文献求助10
9秒前
希望天下0贩的0应助YRJ采纳,获得10
9秒前
敬老院N号应助YY采纳,获得10
9秒前
10秒前
聪明诗槐完成签到,获得积分10
11秒前
哈哈哈完成签到,获得积分10
11秒前
zhangmy1989发布了新的文献求助10
11秒前
12秒前
充电宝应助zy采纳,获得10
13秒前
14秒前
15秒前
16秒前
狗大王完成签到,获得积分10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262406
求助须知:如何正确求助?哪些是违规求助? 2903122
关于积分的说明 8324156
捐赠科研通 2573172
什么是DOI,文献DOI怎么找? 1398083
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623