Early detection of internal erosion in earth dams: combining seismic monitoring and convolutional AutoEncoders

内腐蚀 预警系统 大洪水 计算机科学 腐蚀 人工智能 堤防 地质学 岩土工程 电信 地理 古生物学 考古
作者
Negin Yousefpour,S. Farid F. Mojtahedi
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Informa]
卷期号:18 (3): 570-590 被引量:4
标识
DOI:10.1080/17499518.2023.2251128
摘要

ABSTRACTLevees/earth dams are critical infrastructures for supplementing clean water, flood management, and energy production, prone to progressive failures due to internal erosion. Current inspection methods are unable to detect internal erosion until its exterior manifestation when it is too late to prevent the often-catastrophic failures. Therefore, finding innovative methods for the early detection of internal erosion is crucial. Despite the knowledge about the general mechanism of internal erosion, its early detection (and prevention) has remained a gap. This study introduces a novel artificial intelligence (AI) method to identify the temporal patterns within the passive seismic monitoring data, which can be associated with internal erosion initiation in earth dams. The proposed approach implements Convolutional AutoEncoders, an emerging deep-learning algorithm for anomaly detection in time-series data. Through an unsupervised learning framework, the AutoEncoders are trained using passive seismic monitoring data collected from a full-scale test embankment. In addition to the approximate initiation time, this algorithm can evaluate the initiation location by identifying the first sensors demonstrating internal erosion signs. The proposed deep learning framework combined with continuous seismic monitoring can serve as a basis for developing advanced early warning systems for internal erosion in earth dams.KEYWORDS: Internal erosionPassive seismic dataAnomaly detectionConvolutional autoencoderArtificial intelligenceEarth dams AcknowledgmentsThe authors would like to thank Dr Justin B. Rittgers (USBR) for providing the data and related support in this research and Dr Parisa Rahimzadeh Oskooei for her assistance in the data collection efforts. Grant funding for this research was provided by the University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant held by Dr Negin Yousefpour).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant): [Grant Number 1111].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的战斗机完成签到,获得积分10
刚刚
科研人发布了新的文献求助10
1秒前
hl完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI5应助dingdong采纳,获得10
2秒前
Jasper应助幸福胡萝卜采纳,获得10
2秒前
爱看文献的小羽毛完成签到,获得积分10
2秒前
3秒前
song99发布了新的文献求助10
3秒前
3秒前
juan完成签到 ,获得积分10
3秒前
徐安琪完成签到,获得积分10
4秒前
小蘑菇应助深爱不疑采纳,获得200
4秒前
头发乱了完成签到,获得积分10
4秒前
4秒前
格兰兔米兔完成签到,获得积分10
4秒前
4秒前
4秒前
Luna完成签到 ,获得积分10
5秒前
汪鸡毛发布了新的文献求助10
5秒前
积极寻梅发布了新的文献求助10
6秒前
6秒前
tu发布了新的文献求助30
7秒前
在水一方应助云_123采纳,获得10
7秒前
科研小民工应助晚安采纳,获得50
7秒前
木木完成签到,获得积分10
7秒前
8秒前
8秒前
晨安完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
爆米花应助特兰克斯采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
葛辉辉发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762