Early detection of internal erosion in earth dams: combining seismic monitoring and convolutional AutoEncoders

内腐蚀 预警系统 大洪水 计算机科学 腐蚀 人工智能 堤防 地质学 岩土工程 电信 地理 古生物学 考古
作者
Negin Yousefpour,S. Farid F. Mojtahedi
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Informa]
卷期号:18 (3): 570-590 被引量:4
标识
DOI:10.1080/17499518.2023.2251128
摘要

ABSTRACTLevees/earth dams are critical infrastructures for supplementing clean water, flood management, and energy production, prone to progressive failures due to internal erosion. Current inspection methods are unable to detect internal erosion until its exterior manifestation when it is too late to prevent the often-catastrophic failures. Therefore, finding innovative methods for the early detection of internal erosion is crucial. Despite the knowledge about the general mechanism of internal erosion, its early detection (and prevention) has remained a gap. This study introduces a novel artificial intelligence (AI) method to identify the temporal patterns within the passive seismic monitoring data, which can be associated with internal erosion initiation in earth dams. The proposed approach implements Convolutional AutoEncoders, an emerging deep-learning algorithm for anomaly detection in time-series data. Through an unsupervised learning framework, the AutoEncoders are trained using passive seismic monitoring data collected from a full-scale test embankment. In addition to the approximate initiation time, this algorithm can evaluate the initiation location by identifying the first sensors demonstrating internal erosion signs. The proposed deep learning framework combined with continuous seismic monitoring can serve as a basis for developing advanced early warning systems for internal erosion in earth dams.KEYWORDS: Internal erosionPassive seismic dataAnomaly detectionConvolutional autoencoderArtificial intelligenceEarth dams AcknowledgmentsThe authors would like to thank Dr Justin B. Rittgers (USBR) for providing the data and related support in this research and Dr Parisa Rahimzadeh Oskooei for her assistance in the data collection efforts. Grant funding for this research was provided by the University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant held by Dr Negin Yousefpour).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant): [Grant Number 1111].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助周文鑫采纳,获得10
刚刚
FKKKKSY发布了新的文献求助10
刚刚
赘婿应助可靠的寒风采纳,获得10
刚刚
刚刚
酷波er应助OaaO采纳,获得10
刚刚
晚星应助周梦琪采纳,获得10
1秒前
桃花不换酒完成签到,获得积分10
1秒前
九毛完成签到,获得积分10
1秒前
2秒前
3秒前
wise111发布了新的文献求助20
3秒前
英姑应助舒适的天玉采纳,获得10
3秒前
ning发布了新的文献求助10
3秒前
个性的紫菜应助体贴绝音采纳,获得10
3秒前
个性的紫菜应助体贴绝音采纳,获得10
3秒前
pjxxx完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
思源应助多多采纳,获得10
4秒前
搞笑有毅力完成签到,获得积分10
4秒前
5秒前
5秒前
浮游应助林新宇采纳,获得10
5秒前
如初完成签到,获得积分10
5秒前
6秒前
安兹乌尔恭完成签到 ,获得积分20
6秒前
香蕉觅云应助猛发sci采纳,获得10
7秒前
yyr完成签到,获得积分10
8秒前
Li发布了新的文献求助30
8秒前
科研通AI6应助周凡淇采纳,获得10
9秒前
9秒前
端庄千青发布了新的文献求助10
9秒前
隐形曼青应助wang采纳,获得10
9秒前
9秒前
9秒前
天天快乐应助WU采纳,获得10
9秒前
bluesky发布了新的文献求助10
10秒前
10秒前
槐序二三发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407