Early detection of internal erosion in earth dams: combining seismic monitoring and convolutional AutoEncoders

内腐蚀 预警系统 大洪水 计算机科学 腐蚀 人工智能 堤防 地质学 岩土工程 电信 地理 古生物学 考古
作者
Negin Yousefpour,S. Farid F. Mojtahedi
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Informa]
卷期号:18 (3): 570-590 被引量:4
标识
DOI:10.1080/17499518.2023.2251128
摘要

ABSTRACTLevees/earth dams are critical infrastructures for supplementing clean water, flood management, and energy production, prone to progressive failures due to internal erosion. Current inspection methods are unable to detect internal erosion until its exterior manifestation when it is too late to prevent the often-catastrophic failures. Therefore, finding innovative methods for the early detection of internal erosion is crucial. Despite the knowledge about the general mechanism of internal erosion, its early detection (and prevention) has remained a gap. This study introduces a novel artificial intelligence (AI) method to identify the temporal patterns within the passive seismic monitoring data, which can be associated with internal erosion initiation in earth dams. The proposed approach implements Convolutional AutoEncoders, an emerging deep-learning algorithm for anomaly detection in time-series data. Through an unsupervised learning framework, the AutoEncoders are trained using passive seismic monitoring data collected from a full-scale test embankment. In addition to the approximate initiation time, this algorithm can evaluate the initiation location by identifying the first sensors demonstrating internal erosion signs. The proposed deep learning framework combined with continuous seismic monitoring can serve as a basis for developing advanced early warning systems for internal erosion in earth dams.KEYWORDS: Internal erosionPassive seismic dataAnomaly detectionConvolutional autoencoderArtificial intelligenceEarth dams AcknowledgmentsThe authors would like to thank Dr Justin B. Rittgers (USBR) for providing the data and related support in this research and Dr Parisa Rahimzadeh Oskooei for her assistance in the data collection efforts. Grant funding for this research was provided by the University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant held by Dr Negin Yousefpour).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by University of Melbourne's Faculty of Engineering and IT (Early Career Research Grant): [Grant Number 1111].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助初一采纳,获得10
1秒前
李白白白完成签到,获得积分10
2秒前
pj发布了新的文献求助10
3秒前
柚又发布了新的文献求助10
5秒前
研友_pnx37L完成签到,获得积分10
7秒前
英俊的铭应助linlin采纳,获得10
8秒前
凉冰完成签到 ,获得积分20
8秒前
10秒前
大林发布了新的文献求助10
11秒前
12秒前
小肉球完成签到 ,获得积分10
14秒前
Lucas应助阿雅采纳,获得10
14秒前
义气聪展发布了新的文献求助10
16秒前
17秒前
英姑应助古月采纳,获得10
17秒前
19秒前
ZCH1111完成签到,获得积分10
20秒前
21秒前
22秒前
luoyutian完成签到 ,获得积分10
22秒前
22秒前
22秒前
22秒前
隐形曼青应助婷婷的大哥采纳,获得10
24秒前
mhl11应助sheep采纳,获得10
25秒前
yangy发布了新的文献求助10
25秒前
美式加热完成签到,获得积分10
25秒前
诚心的初露完成签到,获得积分10
25秒前
25秒前
26秒前
小虎牙完成签到,获得积分10
27秒前
27秒前
阿雅发布了新的文献求助10
27秒前
咿呀咿呀发布了新的文献求助10
27秒前
开朗的傲丝完成签到 ,获得积分10
29秒前
完美世界应助美式加热采纳,获得10
29秒前
木子发布了新的文献求助10
29秒前
小虎牙发布了新的文献求助10
30秒前
maox1aoxin应助yumeng采纳,获得100
31秒前
打打应助mbf采纳,获得30
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341041
求助须知:如何正确求助?哪些是违规求助? 2968852
关于积分的说明 8635308
捐赠科研通 2648378
什么是DOI,文献DOI怎么找? 1450137
科研通“疑难数据库(出版商)”最低求助积分说明 671738
邀请新用户注册赠送积分活动 660852