SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures

蛋白质结构预测 蛋白质数据库 蛋白质设计 结构基因组学 蛋白质结构 蛋白质三级结构 蛋白质数据库 蛋白质结构数据库 计算生物学 线程(蛋白质序列) 折叠(高阶函数) 蛋白质折叠 蛋白质测序 蛋白质功能预测 蛋白质工程 人工神经网络 序列(生物学) 计算机科学 蛋白质二级结构 肽序列 生物 人工智能 遗传学 蛋白质功能 序列数据库 生物化学 基因 程序设计语言
作者
F. Adriaan Lategan,Caroline Schreiber,Hugh-George Patterton
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12859-023-05498-4
摘要

Abstract Background The relationship between the sequence of a protein, its structure, and the resulting connection between its structure and function, is a foundational principle in biological science. Only recently has the computational prediction of protein structure based only on protein sequence been addressed effectively by AlphaFold, a neural network approach that can predict the majority of protein structures with X-ray crystallographic accuracy. A question that is now of acute relevance is the “inverse protein folding problem”: predicting the sequence of a protein that folds into a specified structure. This will be of immense value in protein engineering and biotechnology, and will allow the design and expression of recombinant proteins that can, for instance, fold into specified structures as a scaffold for the attachment of recombinant antigens, or enzymes with modified or novel catalytic activities. Here we describe the development of SeqPredNN, a feed-forward neural network trained with X-ray crystallographic structures from the RCSB Protein Data Bank to predict the identity of amino acids in a protein structure using only the relative positions, orientations, and backbone dihedral angles of nearby residues. Results We predict the sequence of a protein expected to fold into a specified structure and assess the accuracy of the prediction using both AlphaFold and RoseTTAFold to computationally generate the fold of the derived sequence. We show that the sequences predicted by SeqPredNN fold into a structure with a median TM-score of 0.638 when compared to the crystal structure according to AlphaFold predictions, yet these sequences are unique and only 28.4% identical to the sequence of the crystallized protein. Conclusions We propose that SeqPredNN will be a valuable tool to generate proteins of defined structure for the design of novel biomaterials, pharmaceuticals, catalysts, and reporter systems. The low sequence identity of its predictions compared to the native sequence could prove useful for developing proteins with modified physical properties, such as water solubility and thermal stability. The speed and ease of use of SeqPredNN offers a significant advantage over physics-based protein design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助crisp采纳,获得10
刚刚
JamesPei应助过时的秋尽采纳,获得10
刚刚
1秒前
稀里糊涂完成签到,获得积分10
1秒前
2秒前
齐天大圣完成签到,获得积分10
2秒前
2秒前
王王的狗子完成签到 ,获得积分10
2秒前
所所应助ikun采纳,获得10
3秒前
魏为维完成签到,获得积分10
3秒前
邓佳鑫Alan应助杨文彬采纳,获得10
4秒前
iNk应助susu采纳,获得20
4秒前
高大的蜡烛应助西早采纳,获得10
7秒前
阿K米德发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
缥缈逍遥完成签到 ,获得积分10
8秒前
Hello应助欣慰若采纳,获得30
9秒前
仙人殊恍惚应助wkkky采纳,获得10
10秒前
XP416完成签到,获得积分10
10秒前
逝水无痕完成签到,获得积分10
10秒前
未晚完成签到,获得积分10
11秒前
毛彬完成签到,获得积分10
11秒前
11秒前
专注凝蝶完成签到,获得积分20
12秒前
12秒前
huangyao完成签到 ,获得积分10
12秒前
12秒前
13秒前
Ava应助炙热的诗桃采纳,获得10
13秒前
鲤鱼灵波发布了新的文献求助10
13秒前
科研小白发布了新的文献求助10
13秒前
沐沐1003完成签到,获得积分10
14秒前
彼方完成签到 ,获得积分10
14秒前
想自由完成签到,获得积分10
15秒前
15秒前
15秒前
阿军发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助30
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060