亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures

蛋白质结构预测 蛋白质数据库 蛋白质设计 结构基因组学 蛋白质结构 蛋白质三级结构 蛋白质数据库 蛋白质结构数据库 计算生物学 线程(蛋白质序列) 折叠(高阶函数) 蛋白质折叠 蛋白质测序 蛋白质功能预测 蛋白质工程 人工神经网络 序列(生物学) 计算机科学 蛋白质二级结构 肽序列 生物 人工智能 遗传学 蛋白质功能 序列数据库 生物化学 基因 程序设计语言
作者
F. Adriaan Lategan,Caroline Schreiber,Hugh-George Patterton
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12859-023-05498-4
摘要

Abstract Background The relationship between the sequence of a protein, its structure, and the resulting connection between its structure and function, is a foundational principle in biological science. Only recently has the computational prediction of protein structure based only on protein sequence been addressed effectively by AlphaFold, a neural network approach that can predict the majority of protein structures with X-ray crystallographic accuracy. A question that is now of acute relevance is the “inverse protein folding problem”: predicting the sequence of a protein that folds into a specified structure. This will be of immense value in protein engineering and biotechnology, and will allow the design and expression of recombinant proteins that can, for instance, fold into specified structures as a scaffold for the attachment of recombinant antigens, or enzymes with modified or novel catalytic activities. Here we describe the development of SeqPredNN, a feed-forward neural network trained with X-ray crystallographic structures from the RCSB Protein Data Bank to predict the identity of amino acids in a protein structure using only the relative positions, orientations, and backbone dihedral angles of nearby residues. Results We predict the sequence of a protein expected to fold into a specified structure and assess the accuracy of the prediction using both AlphaFold and RoseTTAFold to computationally generate the fold of the derived sequence. We show that the sequences predicted by SeqPredNN fold into a structure with a median TM-score of 0.638 when compared to the crystal structure according to AlphaFold predictions, yet these sequences are unique and only 28.4% identical to the sequence of the crystallized protein. Conclusions We propose that SeqPredNN will be a valuable tool to generate proteins of defined structure for the design of novel biomaterials, pharmaceuticals, catalysts, and reporter systems. The low sequence identity of its predictions compared to the native sequence could prove useful for developing proteins with modified physical properties, such as water solubility and thermal stability. The speed and ease of use of SeqPredNN offers a significant advantage over physics-based protein design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助踏实的芸遥采纳,获得30
7秒前
希望天下0贩的0应助pdm采纳,获得10
8秒前
12秒前
Eraaaaa发布了新的文献求助10
17秒前
18秒前
善学以致用应助C111采纳,获得10
22秒前
NexusExplorer应助Dr. Chen采纳,获得10
26秒前
41秒前
科研通AI2S应助清爽的音响采纳,获得10
42秒前
44秒前
YangSihan发布了新的文献求助10
48秒前
Kevin完成签到,获得积分10
48秒前
49秒前
CipherSage应助YangSihan采纳,获得10
54秒前
C111发布了新的文献求助10
54秒前
1分钟前
1分钟前
pdm发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dr. Chen完成签到,获得积分10
1分钟前
Dr. Chen发布了新的文献求助10
1分钟前
1分钟前
1分钟前
mjy完成签到,获得积分10
1分钟前
科研通AI2S应助别急我先送采纳,获得30
1分钟前
温暖的盼山完成签到,获得积分10
1分钟前
呵呵完成签到,获得积分10
1分钟前
1分钟前
1分钟前
慕斯完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助陶珺珺采纳,获得30
1分钟前
C9完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
脚踏实地呢完成签到 ,获得积分10
2分钟前
2分钟前
xyr发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133924
求助须知:如何正确求助?哪些是违规求助? 2784829
关于积分的说明 7768635
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297221
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791