ChatGPT-Generated Differential Diagnosis Lists for Complex Case–Derived Clinical Vignettes: Diagnostic Accuracy Evaluation

鉴别诊断 医学诊断 医学 放射科 病理
作者
Takanobu Hirosawa,Ren Kawamura,Yukinori Harada,Koichi Mizuta,Kazuki Tokumasu,Yuki Kaji,Tomoharu Suzuki,Taro Shimizu
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e48808-e48808 被引量:10
标识
DOI:10.2196/48808
摘要

The diagnostic accuracy of differential diagnoses generated by artificial intelligence chatbots, including ChatGPT models, for complex clinical vignettes derived from general internal medicine (GIM) department case reports is unknown.This study aims to evaluate the accuracy of the differential diagnosis lists generated by both third-generation ChatGPT (ChatGPT-3.5) and fourth-generation ChatGPT (ChatGPT-4) by using case vignettes from case reports published by the Department of GIM of Dokkyo Medical University Hospital, Japan.We searched PubMed for case reports. Upon identification, physicians selected diagnostic cases, determined the final diagnosis, and displayed them into clinical vignettes. Physicians typed the determined text with the clinical vignettes in the ChatGPT-3.5 and ChatGPT-4 prompts to generate the top 10 differential diagnoses. The ChatGPT models were not specially trained or further reinforced for this task. Three GIM physicians from other medical institutions created differential diagnosis lists by reading the same clinical vignettes. We measured the rate of correct diagnosis within the top 10 differential diagnosis lists, top 5 differential diagnosis lists, and the top diagnosis.In total, 52 case reports were analyzed. The rates of correct diagnosis by ChatGPT-4 within the top 10 differential diagnosis lists, top 5 differential diagnosis lists, and top diagnosis were 83% (43/52), 81% (42/52), and 60% (31/52), respectively. The rates of correct diagnosis by ChatGPT-3.5 within the top 10 differential diagnosis lists, top 5 differential diagnosis lists, and top diagnosis were 73% (38/52), 65% (34/52), and 42% (22/52), respectively. The rates of correct diagnosis by ChatGPT-4 were comparable to those by physicians within the top 10 (43/52, 83% vs 39/52, 75%, respectively; P=.47) and within the top 5 (42/52, 81% vs 35/52, 67%, respectively; P=.18) differential diagnosis lists and top diagnosis (31/52, 60% vs 26/52, 50%, respectively; P=.43) although the difference was not significant. The ChatGPT models' diagnostic accuracy did not significantly vary based on open access status or the publication date (before 2011 vs 2022).This study demonstrates the potential diagnostic accuracy of differential diagnosis lists generated using ChatGPT-3.5 and ChatGPT-4 for complex clinical vignettes from case reports published by the GIM department. The rate of correct diagnoses within the top 10 and top 5 differential diagnosis lists generated by ChatGPT-4 exceeds 80%. Although derived from a limited data set of case reports from a single department, our findings highlight the potential utility of ChatGPT-4 as a supplementary tool for physicians, particularly for those affiliated with the GIM department. Further investigations should explore the diagnostic accuracy of ChatGPT by using distinct case materials beyond its training data. Such efforts will provide a comprehensive insight into the role of artificial intelligence in enhancing clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助er2222采纳,获得10
1秒前
df发布了新的文献求助30
2秒前
樊伟诚完成签到,获得积分10
3秒前
于芋菊发布了新的文献求助10
3秒前
大模型应助kehan采纳,获得10
3秒前
乐观化蛹发布了新的文献求助30
4秒前
毒扁豆碱完成签到,获得积分10
4秒前
4秒前
传奇3应助SUN采纳,获得10
5秒前
6秒前
hanzhenzhen完成签到,获得积分10
7秒前
7秒前
somls发布了新的文献求助10
8秒前
完美世界应助豆子采纳,获得10
8秒前
Jasper应助江瀛采纳,获得10
8秒前
8秒前
noyal发布了新的文献求助10
9秒前
Messi发布了新的文献求助10
9秒前
11秒前
ppc完成签到,获得积分10
11秒前
13秒前
zhuqian发布了新的文献求助10
13秒前
13秒前
危机的井完成签到,获得积分10
13秒前
三土完成签到 ,获得积分10
14秒前
Hello应助72J采纳,获得30
14秒前
df完成签到,获得积分20
15秒前
江瀛完成签到,获得积分10
15秒前
October发布了新的文献求助10
15秒前
琉璃碎梦离完成签到,获得积分10
17秒前
17秒前
饱满的菲鹰完成签到,获得积分10
17秒前
HEIKU应助meijuan1210采纳,获得10
18秒前
标致念波完成签到,获得积分20
18秒前
SUN发布了新的文献求助10
19秒前
安静的芝麻完成签到,获得积分10
19秒前
陈雷应助正直眼神采纳,获得10
19秒前
李健应助somls采纳,获得10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503