MRI‐Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges

可解释性 人工智能 深度学习 无线电技术 机器学习 卷积神经网络 肝细胞癌 计算机科学 磁共振成像 医学 放射科 内科学
作者
Tianyi Xia,Ben Y. Zhao,Binrong Li,Lei Ying,Yang Song,Yuancheng Wang,Tianyu Tang,Shenghong Ju
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:10
标识
DOI:10.1002/jmri.28982
摘要

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer‐related death worldwide. HCC exhibits strong inter‐tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine‐learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI‐enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI‐enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI‐enabled models, including aspects such as domain knowledge, novel algorithms, and multi‐dimension data sources. Overcoming these challenges would allow AI‐enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. Level of Evidence 5 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邱丽膏完成签到,获得积分10
1秒前
xiaooooo发布了新的文献求助10
2秒前
2秒前
2秒前
啦啦啦完成签到,获得积分10
2秒前
jopaul完成签到,获得积分10
3秒前
4秒前
ccch发布了新的文献求助10
4秒前
善学以致用应助邱丽膏采纳,获得10
4秒前
luo完成签到,获得积分10
4秒前
科研通AI2S应助paperlovesme采纳,获得10
4秒前
5秒前
Leonardi应助guoxingliu采纳,获得200
5秒前
木子完成签到 ,获得积分10
5秒前
ada阿达完成签到,获得积分10
5秒前
活泼的抽屉完成签到,获得积分10
5秒前
linxi完成签到,获得积分10
5秒前
6秒前
小芳芳发布了新的文献求助10
6秒前
高挑的寒松完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
苯二氮卓完成签到,获得积分10
8秒前
隐形的飞雪完成签到,获得积分10
9秒前
9秒前
9秒前
DrW1111发布了新的文献求助10
10秒前
爱学习的YY完成签到 ,获得积分10
10秒前
李希有发布了新的文献求助10
10秒前
NexusExplorer应助美丽电源采纳,获得10
10秒前
10秒前
幽默的小猫咪完成签到 ,获得积分10
10秒前
影子发布了新的文献求助10
11秒前
11秒前
俊逸山芙完成签到,获得积分10
11秒前
君君欧发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813