膜
巴勒
碳纳米管
聚合物
材料科学
气体分离
表面改性
化学工程
相容性(地球化学)
选择性
傅里叶变换红外光谱
磁导率
纳米技术
复合材料
有机化学
化学
催化作用
生物化学
工程类
作者
Xingqian Wang,Yifei Wang,Yongjiang Shan,Xuerong Wang,Yingdong Yang,Fei Zhang,Xiangshu Chen
标识
DOI:10.1016/j.jece.2023.109537
摘要
In recent years, membrane separation technology has received extensive attention in CO2/N2 separation. Carbon nanotubes (CNTs) were regarded as ideal fillers for constructing high permeability mixed matrix membranes (MMMs) due to their special tubular structure. However, the interfacial compatibility between CNTs and organic polymer phases is a large challenge, seriously hindering the development of carbon-based mixed matrix membranes. In this work, we proposed a novel polyethyleneimine (PEI) surface functionalization strategy to effectively improve the compatibility between multi-walled carbon nanotubes (MWCNTs) and Pebax-1657. The as-prepared [email protected]/Pebax-1657 MMMs were analyzed by XRD, EDS, FTIR, TG, etc. The PEI can improve the compatibility of MWCNTs with the polymer matrix. In addition, the abundant amino groups in the PEI structure can provide ample active sites for CO2, which can improve CO2 permeability and CO2/N2 selectivity simultaneously. Combining the low resistance of MWCNTs to gas transport, the membrane showed 178.08% enhancement in selectivity (82.06) of CO2/N2 compared to the pristine membrane with 152.49% increment in the permeability (150.51 Barrer) of CO2. This work provides a novel strategy for preparing carbon-based mixed matrix membranes with high gas separation performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI