On the calibration of stochastic car following models

校准 集合(抽象数据类型) 计算机科学 透视图(图形) 实验数据 算法 随机建模 数学 统计 人工智能 程序设计语言
作者
Zhou, Shirui,Zheng, Shiteng,Treiber, Martin,Tian, Junfang,Jiang, Rui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.04648
摘要

Recent experimental and empirical observations have demonstrated that stochasticity plays a critical role in car following (CF) dynamics. To reproduce the observations, quite a few stochastic CF models have been proposed. However, while calibrating the deterministic CF models is well investigated, studies on how to calibrate the stochastic models are lacking. Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the CF experiment under the same driving environment is conducted and analyzed. Based on the experimental results, we test two previous calibration methods, i.e., the method to minimize the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation (MLE). Deficiencies of the two methods have been identified. Next, we propose a new method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the experimental data and the synthetic data demonstrates that the new method outperforms the two previous methods. Furthermore, the mechanisms of different methods are explored from the perspective of error analysis. The analysis indicates that the new method can be regarded as a nested optimization model. The method separates the aleatoric errors caused by stochasticity from the epistemic error caused by parameters, and it is able to deal with the two kinds of errors effectively. Finally, we find that under the calibration framework of stochastic CF models, the calibrated parameter set using spacing as MoP may not always outperform that using velocity as MoP. These findings are expected to enhance the understanding of the role of stochasticity in CF dynamics where the new calibration framework for stochastic CF models is established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助感谢采纳,获得10
刚刚
茶米发布了新的文献求助10
3秒前
采波完成签到,获得积分10
3秒前
4秒前
4秒前
Lucas应助year采纳,获得10
4秒前
领导范儿应助叁叁肆采纳,获得10
4秒前
俊逸尔云发布了新的文献求助10
5秒前
香蕉诗蕊应助陈文辉小白采纳,获得10
5秒前
采波发布了新的文献求助60
7秒前
研友_VZG7GZ应助章半仙采纳,获得10
7秒前
8秒前
8秒前
tracy发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
13秒前
嘉嘉完成签到,获得积分20
13秒前
14秒前
感谢发布了新的文献求助10
14秒前
liying发布了新的文献求助10
15秒前
sci2025opt完成签到 ,获得积分10
15秒前
15秒前
15秒前
叁叁肆发布了新的文献求助10
16秒前
充电宝应助义气的衬衫采纳,获得10
17秒前
科研通AI6应助茶米采纳,获得10
17秒前
英俊雪曼发布了新的文献求助10
17秒前
谨慎盼山发布了新的文献求助10
18秒前
18秒前
科研通AI6应助科研小白采纳,获得10
18秒前
year发布了新的文献求助10
19秒前
金小爬小金完成签到,获得积分20
19秒前
gyt完成签到,获得积分10
20秒前
小葱头发布了新的文献求助100
20秒前
20秒前
LJJ发布了新的文献求助10
21秒前
英俊的铭应助czf采纳,获得10
22秒前
shijie应助谨慎盼山采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439