On the calibration of stochastic car following models

校准 集合(抽象数据类型) 计算机科学 透视图(图形) 实验数据 算法 随机建模 数学 统计 人工智能 程序设计语言
作者
Zhou, Shirui,Zheng, Shiteng,Treiber, Martin,Tian, Junfang,Jiang, Rui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.04648
摘要

Recent experimental and empirical observations have demonstrated that stochasticity plays a critical role in car following (CF) dynamics. To reproduce the observations, quite a few stochastic CF models have been proposed. However, while calibrating the deterministic CF models is well investigated, studies on how to calibrate the stochastic models are lacking. Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the CF experiment under the same driving environment is conducted and analyzed. Based on the experimental results, we test two previous calibration methods, i.e., the method to minimize the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation (MLE). Deficiencies of the two methods have been identified. Next, we propose a new method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the experimental data and the synthetic data demonstrates that the new method outperforms the two previous methods. Furthermore, the mechanisms of different methods are explored from the perspective of error analysis. The analysis indicates that the new method can be regarded as a nested optimization model. The method separates the aleatoric errors caused by stochasticity from the epistemic error caused by parameters, and it is able to deal with the two kinds of errors effectively. Finally, we find that under the calibration framework of stochastic CF models, the calibrated parameter set using spacing as MoP may not always outperform that using velocity as MoP. These findings are expected to enhance the understanding of the role of stochasticity in CF dynamics where the new calibration framework for stochastic CF models is established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
1秒前
王檬发布了新的文献求助10
1秒前
刻苦的如霜完成签到,获得积分20
1秒前
深情安青应助lll采纳,获得10
1秒前
HappyFlight9898完成签到,获得积分10
2秒前
小巧的吐司完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
一颗菠菜完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
4秒前
meiyugao发布了新的文献求助10
4秒前
halogen发布了新的文献求助10
5秒前
ljys完成签到,获得积分10
7秒前
彭于晏应助二十五采纳,获得10
9秒前
打打应助会爬树的苹果采纳,获得10
9秒前
chen完成签到,获得积分10
9秒前
疯狂的炳完成签到,获得积分20
11秒前
11秒前
FashionBoy应助王檬采纳,获得10
13秒前
邓宇彤完成签到,获得积分10
13秒前
霸气幼荷完成签到,获得积分10
13秒前
14秒前
gqz完成签到,获得积分10
14秒前
壮观发布了新的文献求助10
14秒前
dong应助英俊的小恐龙采纳,获得10
15秒前
15秒前
15秒前
小二郎应助hxl采纳,获得10
15秒前
meiyugao完成签到,获得积分10
15秒前
16秒前
17秒前
清风完成签到,获得积分10
17秒前
18秒前
大个应助halogen采纳,获得10
19秒前
核桃发布了新的文献求助10
21秒前
21秒前
SXM发布了新的文献求助10
21秒前
华仔应助鳗鱼文涛采纳,获得10
22秒前
二十五发布了新的文献求助10
22秒前
打打应助酷炫的平蝶采纳,获得10
24秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182