亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On the calibration of stochastic car following models

校准 集合(抽象数据类型) 计算机科学 透视图(图形) 实验数据 算法 随机建模 数学 统计 人工智能 程序设计语言
作者
Zhou, Shirui,Zheng, Shiteng,Treiber, Martin,Tian, Junfang,Jiang, Rui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.04648
摘要

Recent experimental and empirical observations have demonstrated that stochasticity plays a critical role in car following (CF) dynamics. To reproduce the observations, quite a few stochastic CF models have been proposed. However, while calibrating the deterministic CF models is well investigated, studies on how to calibrate the stochastic models are lacking. Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the CF experiment under the same driving environment is conducted and analyzed. Based on the experimental results, we test two previous calibration methods, i.e., the method to minimize the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation (MLE). Deficiencies of the two methods have been identified. Next, we propose a new method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the experimental data and the synthetic data demonstrates that the new method outperforms the two previous methods. Furthermore, the mechanisms of different methods are explored from the perspective of error analysis. The analysis indicates that the new method can be regarded as a nested optimization model. The method separates the aleatoric errors caused by stochasticity from the epistemic error caused by parameters, and it is able to deal with the two kinds of errors effectively. Finally, we find that under the calibration framework of stochastic CF models, the calibrated parameter set using spacing as MoP may not always outperform that using velocity as MoP. These findings are expected to enhance the understanding of the role of stochasticity in CF dynamics where the new calibration framework for stochastic CF models is established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
55秒前
Criminology34应助科研通管家采纳,获得10
55秒前
搜集达人应助科研通管家采纳,获得10
55秒前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
2分钟前
小唐完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
3分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
啸西风完成签到,获得积分10
5分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
Criminology34应助Zhangfu采纳,获得20
7分钟前
Aixx完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139