On the calibration of stochastic car following models

校准 集合(抽象数据类型) 计算机科学 透视图(图形) 实验数据 算法 随机建模 数学 统计 人工智能 程序设计语言
作者
Zhou, Shirui,Zheng, Shiteng,Treiber, Martin,Tian, Junfang,Jiang, Rui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.04648
摘要

Recent experimental and empirical observations have demonstrated that stochasticity plays a critical role in car following (CF) dynamics. To reproduce the observations, quite a few stochastic CF models have been proposed. However, while calibrating the deterministic CF models is well investigated, studies on how to calibrate the stochastic models are lacking. Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the CF experiment under the same driving environment is conducted and analyzed. Based on the experimental results, we test two previous calibration methods, i.e., the method to minimize the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation (MLE). Deficiencies of the two methods have been identified. Next, we propose a new method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the experimental data and the synthetic data demonstrates that the new method outperforms the two previous methods. Furthermore, the mechanisms of different methods are explored from the perspective of error analysis. The analysis indicates that the new method can be regarded as a nested optimization model. The method separates the aleatoric errors caused by stochasticity from the epistemic error caused by parameters, and it is able to deal with the two kinds of errors effectively. Finally, we find that under the calibration framework of stochastic CF models, the calibrated parameter set using spacing as MoP may not always outperform that using velocity as MoP. These findings are expected to enhance the understanding of the role of stochasticity in CF dynamics where the new calibration framework for stochastic CF models is established.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
润润轩轩发布了新的文献求助10
1秒前
1秒前
1秒前
彼岸花完成签到 ,获得积分10
1秒前
科研小兔子完成签到,获得积分10
1秒前
sfw发布了新的文献求助10
1秒前
Zn应助梦鱼采纳,获得10
2秒前
瓦尔迪完成签到,获得积分10
2秒前
jennyyu发布了新的文献求助10
2秒前
灯灯完成签到,获得积分10
3秒前
大白天的飙摩的完成签到,获得积分10
3秒前
沉静的万天完成签到 ,获得积分10
3秒前
workwork完成签到,获得积分10
3秒前
GOODYUE完成签到,获得积分20
3秒前
轻松笙完成签到,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
顺顺发布了新的文献求助20
6秒前
6秒前
黎黎完成签到,获得积分10
6秒前
6秒前
camellia发布了新的文献求助10
6秒前
7秒前
7秒前
筱玉完成签到,获得积分10
7秒前
李文博发布了新的文献求助10
7秒前
斯文静曼发布了新的文献求助10
7秒前
jiaolulu完成签到,获得积分10
7秒前
优秀的枫完成签到,获得积分20
7秒前
7秒前
美嘉美完成签到,获得积分10
7秒前
8秒前
炙热芝完成签到,获得积分10
9秒前
嘒彼小星完成签到 ,获得积分10
9秒前
9秒前
哭泣的翠丝完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759