On the calibration of stochastic car following models

校准 集合(抽象数据类型) 计算机科学 透视图(图形) 实验数据 算法 随机建模 数学 统计 人工智能 程序设计语言
作者
Zhou, Shirui,Zheng, Shiteng,Treiber, Martin,Tian, Junfang,Jiang, Rui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.04648
摘要

Recent experimental and empirical observations have demonstrated that stochasticity plays a critical role in car following (CF) dynamics. To reproduce the observations, quite a few stochastic CF models have been proposed. However, while calibrating the deterministic CF models is well investigated, studies on how to calibrate the stochastic models are lacking. Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the CF experiment under the same driving environment is conducted and analyzed. Based on the experimental results, we test two previous calibration methods, i.e., the method to minimize the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation (MLE). Deficiencies of the two methods have been identified. Next, we propose a new method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the experimental data and the synthetic data demonstrates that the new method outperforms the two previous methods. Furthermore, the mechanisms of different methods are explored from the perspective of error analysis. The analysis indicates that the new method can be regarded as a nested optimization model. The method separates the aleatoric errors caused by stochasticity from the epistemic error caused by parameters, and it is able to deal with the two kinds of errors effectively. Finally, we find that under the calibration framework of stochastic CF models, the calibrated parameter set using spacing as MoP may not always outperform that using velocity as MoP. These findings are expected to enhance the understanding of the role of stochasticity in CF dynamics where the new calibration framework for stochastic CF models is established.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏岚给夏岚的求助进行了留言
刚刚
奇奇吃面发布了新的文献求助30
1秒前
多摩川的烟花少年完成签到,获得积分10
3秒前
灰鸽舞完成签到 ,获得积分10
3秒前
3秒前
5秒前
研友_VZG7GZ应助mml采纳,获得10
7秒前
7秒前
顾文强发布了新的文献求助30
8秒前
Lucas应助大福采纳,获得10
8秒前
Even9完成签到,获得积分10
9秒前
酵父完成签到,获得积分10
9秒前
10秒前
机智的天天完成签到 ,获得积分10
19秒前
寒冷志泽完成签到,获得积分10
21秒前
皇帝的床帘完成签到,获得积分10
23秒前
充电宝应助顾文强采纳,获得10
23秒前
27秒前
jinying完成签到,获得积分10
28秒前
xn201120完成签到 ,获得积分10
30秒前
大福发布了新的文献求助10
31秒前
xn201120关注了科研通微信公众号
33秒前
彭a完成签到,获得积分10
34秒前
藏识完成签到,获得积分10
37秒前
以甲引丁发布了新的文献求助10
37秒前
优秀剑愁完成签到 ,获得积分10
42秒前
小张z完成签到,获得积分10
42秒前
大福完成签到,获得积分10
43秒前
机灵晓刚完成签到 ,获得积分10
46秒前
羊毛毛衣完成签到,获得积分10
47秒前
橘涂完成签到 ,获得积分10
49秒前
52秒前
千里共婵娟完成签到,获得积分10
54秒前
刻苦冷菱完成签到 ,获得积分10
57秒前
XZY发布了新的文献求助10
58秒前
1分钟前
酷酷的思萱完成签到,获得积分10
1分钟前
早日发nature完成签到 ,获得积分10
1分钟前
雨齐完成签到,获得积分10
1分钟前
善学以致用应助ZSmile采纳,获得20
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023